The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxidation of histidine residues in copper-zinc superoxide dismutase by bicarbonate-stimulated peroxidase and thiol oxidase activities: pulse EPR and NMR studies.

In this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected. Both His-44 and His-46 in the Cu(II) active site were oxidized based on the disappearance of NOESY cross-peaks between CH and NH resonances of the imidazole rings. In the Zn(II) site, only His-69, which is closer to His-44, was oxidatively modified. However, addition of HCO(3)(-) protected the active site His residues. Instead, resonances assigned to the His-41 residue, 11 Å away from the Cu(II) site, were completely abolished during both HCO(3)(-)-stimulated peroxidase activity and thiol oxidase activity in the presence of HCO(3)(-) . Additionally, ESEEM/HYSCORE and ENDOR studies of SOD treated with peroxide/Cys in the absence of HCO(3)(-) revealed that hyperfine couplings to the distal and directly coordinated nitrogens of the His-44 and His-46 ligands at the Cu(II) active site were modified. In the presence of HCO(3)(-), these modifications were absent. HCO(3)(-)-mediated, selective oxidative modification of histidines in SOD may be relevant to understanding the molecular mechanism of SOD peroxidase and thiol oxidase activities.[1]

References

  1. Oxidation of histidine residues in copper-zinc superoxide dismutase by bicarbonate-stimulated peroxidase and thiol oxidase activities: pulse EPR and NMR studies. Chandran, K., McCracken, J., Peterson, F.C., Antholine, W.E., Volkman, B.F., Kalyanaraman, B. Biochemistry (2010) [Pubmed]
 
WikiGenes - Universities