The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue.

The NPR1 gene of Saccharomyces cerevisiae plays a central role in controlling permease activity; its product is required to promote the activity of at least six distinct transport systems for nitrogenous nutrients under conditions of nitrogen catabolite derepression. We report here the nucleotide sequence of the cloned NPR1 gene. The predicted amino acid sequence indicates that NPR1 encodes a protein of 86 kDa which appears to be organized into two distinct structural domains. The amino-terminal domain of NPR1 (residues 1 to 440) contains 26% serine residues and several regions strongly enriched for PEST residues suggesting a short half-life for the NPR1 protein. The carboxy-terminal region of NPR1 contains consensus sequences characteristic of the catalytic domains of protein kinases. Therefore, NPR1-dependent positive control of nitrogen transport systems most likely involves protein phosphorylation. Northern analysis indicates that the absence of general amino acid permease (GAP1) activity in npr1 mutants is not due to reduction in transcription or messenger stability. Hence, the NPR1 protein probably acts at the post-transcriptional level. Proteins that may serve as substrates for phosphorylation are discussed.[1]

References

 
WikiGenes - Universities