The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The hydrolysis of brain and atrial natriuretic peptides by porcine choroid plexus is attributable to endopeptidase-24.11.

The hydrolysis of the porcine 26-residue brain natriuretic peptide (BNP-26) and its counterpart human 28-residue atrial natriuretic peptide (alpha-hANP) by pig membrane preparations and purified membrane peptidases was studied. When the two peptides were incubated with choroid plexus membranes, the products being analysed by h.p.l.c., alpha-hANP was degraded twice as fast as BNP. The h.p.l.c. profiles of alpha-hANP hydrolysis, in short incubations with choroid plexus membranes, yielded alpha hANP' as the main product, this having been previously shown to be the result of hydrolysis at the Cys7-Phe8 bond. In short incubations this cleavage was inhibited 84% by 1 microM-phosphoramidon, a specific inhibitor of endopeptidase-24.11. BNP-26 was hydrolysed by choroid plexus membranes, kidney microvillar membranes and purified endopeptidase-24.11 in a manner that yielded identical h.p.l.c. profiles. In the presence of phosphoramidon, hydrolysis by the choroid plexus membranes was 94% inhibited. Captopril had no effect and, indeed, no hydrolysis of BNP-26 by peptidyl dipeptidase A (angiotensin-converting enzyme) was observed even after prolonged incubation with the purified enzyme. The stepwise hydrolysis of BNP-26 by endopeptidase-24.11 was investigated by sequencing the peptides produced during incubation. The initial product resulted from hydrolysis at Ser14-Leu15, thereby opening the ring. This product ( BNP') was short-lived; further degradation involved hydrolysis at Ile12-Gly13, Arg8-Leu9, Gly17-Leu18, Val22-Leu23, Arg11-Ile12 and Cys4-Phe5. Thus endopeptidase-24.11 is the principal enzyme in renal microvillar and choroid plexus membranes hydrolysing BNP-26 and alpha-hANP.[1]

References

 
WikiGenes - Universities