The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.

Cu,Zn superoxide dismutase (Cu,Zn-SOD; EC 1.15.1.1) is known to be inhibited slowly by H2O2. Using EPR and the spin traps 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN), we have shown that Cu,Zn-SOD catalyzes the formation of "free" .OH radicals from H2O2 in pH 7.6 bicarbonate buffer. Supporting evidence includes the following: (i) H2O2 and active Cu,Zn-SOD are required to yield significant signals from spin-trap-OH adducts. (ii) With O2-., Cu,Zn-SOD causes the appearance of intense resonance signals due to DMPO-OH adducts. These signals were inhibited strongly by catalase. (iii) With H2O2, Cu,Zn-SOD, and DMPO, radical scavengers formate and azide, but not ethanol, decrease DMPO-OH signals while causing new intense signals due to their corresponding DMPO-radical adducts. Failure of ethanol to quench DMPO-OH signals is discussed in light of the positively charged active channel of the enzyme. (iv) With PBN as a spin trap, ethanol quenches .OH radical signals and yields PBN-trapped hydroxyethyl radical signals. (v) Mn-SOD does not catalyze "free" .OH radical formation and it also exerts no effect on the signals of DMPO-OH adducts when added together with the Cu,Zn-SOD. The capacity of Cu,Zn-SOD to generate "free" .OH radicals from H2O2 may in part explain the biological damage associated with elevated intracellular SOD activity.[1]

References

  1. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim, M.B., Chock, P.B., Stadtman, E.R. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
 
WikiGenes - Universities