The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes.

Human endonexin II (annexin V) and recombinant human endonexin II can be activated by Ca2+ to interact with acidic phospholipid bilayers formed at the tip of a patch pipette. Once associated with the bilayer, endonexin II forms voltage-gated channels which are selective for divalent cations according to the following series Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+. However, endonexin II also expresses a selective affinity for Ca2+ which is manifest by an observed reduced current through the open channel when Ca2+ is the charge carrier. La3+ blocks endonexin II channels, as it does synexin (annexin VII) and other types of Ca2+ channels. However, as with synexin, the dihydropyridine Ca2+ channel antagonist nifedipine does not affect endonexin II channel activity. Endonexin II channels are also permeant to Li+, Cs+, Na+, and to a lesser extent, K+, resembling in this manner Ca2+ release channels from sarcoplasmic reticulum. Indeed, the low affinity of endonexin II channels for such ions as Cs+ or Li+ have allowed us to use these cations for measurement of the kinetic properties of the channel, with minimal concerns for the ion/channel interactions observed with the physiological substrate, Ca+. Finally, we observed that endonexin II channel activity always occurred in bursts, making necessary the use of two exponential functions to fit open- and closed-time histograms. We conclude from these data that the domain responsible for endonexin II channel activity, first observed by ourselves in the homologue synexin, is probably the C-terminal tetrad repeat common to both molecules.[1]

References

  1. Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. Rojas, E., Pollard, H.B., Haigler, H.T., Parra, C., Burns, A.L. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities