The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxygen and temperature dependence of stimulated insulin secretion in isolated rat islets of Langerhans.

The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.[1]

References

  1. Oxygen and temperature dependence of stimulated insulin secretion in isolated rat islets of Langerhans. Ohta, M., Nelson, D., Nelson, J., Meglasson, M.D., Erecińska, M. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities