The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Morphological and degradation studies of sirolimus-containing poly(lactide-co-glycolide) discs.

The effect of residual solvent and copolymer ratio on the in vitro degradation and drug release behavior of a bioabsorbable polymer/drug system was investigated in an effort to understand and develop the use of these excipients for controlled drug delivery devices. Sirolimus-containing poly(lactide-co-glycolide) (PLGA) discs were fabricated by a solution-casting method using dimethyl sulfoxide (DMSO) as the solvent. The residual DMSO was removed from a set of discs by supercritical carbon dioxide extraction, and reflections of crystalline sirolimus were observed in the wide-angle X-ray scattering profile observed after extraction. A correlation was not observed between the extent of drug crystallization and extraction conditions and copolymer ratio. Mass loss, molecular weight, and sirolimus release were monitored during an in vitro study of the oven-dried neat PLGA, sirolimus-containing PLGA, and extracted sirolimus-containing PLGA discs during 56 days. The sirolimus-containing PLGA discs with residual DMSO exhibited a faster sirolimus release rate compared to the extracted discs. The residual DMSO facilitated release of sirolimus. The discs that contained PLGA with higher glycolide content, particularly 50% glycolide, degraded faster and exhibited faster sirolimus release. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.[1]

References

  1. Morphological and degradation studies of sirolimus-containing poly(lactide-co-glycolide) discs. Ro, A.J., Falotico, R., Davé, V. J. Biomed. Mater. Res. Part B Appl. Biomater. (2011) [Pubmed]
 
WikiGenes - Universities