The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetic studies on the effect of the heme iron(III) on the protein folding of ferricytochrome c.

The three-dimensional conformation of ferricytochrome c results from specific folding of the polypeptide chain around the covalently bound heme so that His-18 and Met-80 are axially coordinated to the Fe(III). The Fe(III)-free, porphyrin protein has an intrinsic viscosity, sedimentation coefficient, and circular dichroism indicative of a compact, globular protein conformation comparable to the holoprotein. Both the porphyrin protein and ferricytochrome c are reversibly denatured by guanidinium chloride. Refolding of the porphyrin protein occurs in essentially a single, exceptionally rapid kinetic phase (tau = 14 ms, 0.75 M guanidinium chloride, pH 6.5, 25 degrees C); whereas refolding of ferricytochrome c occurs in two slower kinetic phases (TAU 1 = 0.10 S, TAU 2 = 20 S) UNDER COMPARABLE CONDITIONS. The presence of Fe(III) in the metalloporphyrin of ferricytochrome c thus has a major effect on the protein folding kinetics. The slow kinetic phase is evidently due to this effect of Fe(III) and not to the slow cis-trans isomerism of the peptide bond of proline residues as has been suggested.[1]

References

 
WikiGenes - Universities