12-Hydroxyeicosatetraenoic acid is metabolized by beta-oxidation in mouse peritoneal macrophages. Identification of products and proposed pathway.
The products derived from the metabolism of 12-hydroxyeicosatetraenoic acid (12-HETE) by mouse peritoneal macrophages were characterized by high performance liquid chromatography (HPLC) and GC-mass spectrometry. HPLC analysis demonstrated two predominant polar products and several minor ones. The proportion and amounts of these products were dependent on the concentration of 12-HETE, the number of macrophages incubated with the monohydroxy fatty acid, and the time of incubation. The products identified by GC-mass spectrometry suggested that 12-HETE had undergone beta-oxidation. The intermediates identified were: 3,12-dihydroxy-5,8,10,14, 20:4; 10-hydroxy-3,6,8,12, 18:4; 3,10-dihydroxy-6,8,12, 18:3; 8-hydroxy-4,6,10, 16:3; 6-hydroxy-4,8, 14:2; and 4-hydroxy, 12:1. The major products, as identified by HPLC and GC-mass spectrometry, were 8-hydroxy-4,6,10, 16:3 and 4-hydroxy, 12:1. A minor product, 10-hydroxy-6,8,12, 18:3 was postulated to arise from either the isomerization and reduction of 10-hydroxy-3,6,8,12, 18:4 or from chain elongation of 8-hydroxy-4,6,10, 16:3. Inhibiting cyclooxygenase and lipoxygenase activities by ibuprofen and nordihydroguaiaretic acid, respectively, did not inhibit the formation of these products. 82% to 98% of 12-HETE was converted and released into the medium as products of beta-oxidation. The remainder was taken up into cellular lipids. beta-Oxidation of 12-HETE was decreased by only 12 and 21% after inhibiting mitochondrial fatty acid oxidation by 89 and 93% by 5 and 100 microM concentrations of the mitochondrial fatty acid oxidation inhibitor, methyl palmoxirate, respectively. It is thus postulated that the beta-oxidation of 12-HETE by mouse peritoneal macrophages occurs in peroxisomes.[1]References
- 12-Hydroxyeicosatetraenoic acid is metabolized by beta-oxidation in mouse peritoneal macrophages. Identification of products and proposed pathway. Mathur, S.N., Albright, E., Field, F.J. J. Biol. Chem. (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg