The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Novel bioactivity of NHERF1 in corneal neovascularization.

PURPOSE: This paper aimed to determine the involvement of Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) in experimental murine corneal neovascularization (NV), and to study the effect of NHERF1 on the biological properties of HUVEC and related mechanisms. METHODS: Using loss- and gain-function, we investigated the biological effects of NHERF1 on HUVEC. Western blotting was used to detect the expression of NHERF1 in cells. A carboxyfluorescein succinimidyl ester (CFSE) labeling assay and scarification test were used to measure the proliferation and migration activity, respectively, of HUVEC. The cell cycle distribution of the cells was assessed by flow cytometry analysis. The effect of NHERF1 on the phosphorylation levels of Akt and the changes of matrix metalloproteinase (MMP)-2 and MMP-9 levels were detected by western blotting analysis. Change in the NHERF1 expression in the alkali burn-induced corneal NV model was detected by microarray, real-time PCR, and immunofluorescence. RESULTS: Overexpression of exogenous NHERF1 in HUVEC slightly inhibited the proliferation and significantly reduced the migration of the cells. NHERF1 also significantly downregulated Akt1 phosphorylation induced by platelet-derived growth factor BB (PDGF-BB) and the secretion of MMP-2 and MMP-9 compared with control cells. NHERF1 was upregulated in corneas challenged with alkali burns. CONCLUSIONS: Our results indicated that NHERF1 might serve as a potential target for manipulating neovascularization-related diseases. This discovery contributes to a better understanding of the bioactivity of NHERF1 in angiogenesis.[1]

References

  1. Novel bioactivity of NHERF1 in corneal neovascularization. Chen, P., Wang, Y., Yang, L., Li, C., Wang, Y., Xie, L., Wang, Y. Graefes Arch. Clin. Exp. Ophthalmol. (2012) [Pubmed]
 
WikiGenes - Universities