The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A comparative investigation of the metabolism of methyl bromide and methyl iodide in human erythrocytes.

Human erythrocyte cytoplasm was incubated in head space vials with either methyl bromide or methyl iodide. The decline in concentration of the two methyl halides was monitored by gas chromatography. Simultaneously, the production of S-methylglutathione was determined by thin layer chromatography. In parallel experiments, boiled erythrocyte cytoplasm was used in order to determine non-enzymatic conjugation. Furthermore, inhibition experiments with sulfobromophthalein were performed. The results were compared with previous findings on the metabolism of methyl chloride. In contrast to methyl chloride, both methyl bromide and methyl iodide showed a significant non-enzymatic conjugation with glutathione. In addition, an enzymatic conjugation could be observed in the erythrocyte cytoplasm of the majority of the population, whereas a minority lacks this enzymatic activity. This is consistent with findings on methyl chloride. Inhibition experiments show that a minor form of the erythrocyte glutathione transferase may be responsible for the enzymatic conjugation. Of the three monohalogenated methanes, methyl bromide is the substrate with the highest affinity for the conjugating enzyme(s). In the case of methyl iodide, non-enzymatic reaction overweighs the enzymatic process. There are possible implications of the results for occupational health and the toxicity of the substances.[1]

References

  1. A comparative investigation of the metabolism of methyl bromide and methyl iodide in human erythrocytes. Hallier, E., Deutschmann, S., Reichel, C., Bolt, H.M., Peter, H. International archives of occupational and environmental health. (1990) [Pubmed]
 
WikiGenes - Universities