The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Threonine deaminase from Escherichia coli. II. Maturation and physical properties of the enzyme from a mutant altered in its regulation of gene expression.

The biosynthetic L-threonine deaminase (L-threonine hydrolase deaminating, EC 4.2.1.16) has been purified from Escherichia coli K12 regulatory mutant CU18. This mutant has properties that follow the predictions of the autogregulatory model previously proposed for the control of synthesis of the isoleucine-valine biosynthetic enzymes. The autoregulatory model specifies that L-threonine deaminase participates in the control of the expression of the ilv ADE gene cluster as well as the ilv B gene and ilv C gene, which constitute three separate units of regulation. The single mutation in strain CU18 results in altered regulation of ilv gene expression and in the production of an altered L-threonine deaminase. The immature form of the enzyme purified from mutant CU18 exhibits an altered response to L-valine, a maturation-inducing ligand. The native form of the mutant is altered in its apparent Km for L-threonine and in its response to the effects of L-valine and L-isoleucine upon catalytic activity. The mutant and wild type L-threonine deaminases differ in the apoenzyme formed as a consequence of alkaline dialysis. Dialysis of the mutant enzyme yields an apoenzyme mixture, apparently of dimers and monomers, while the wild type enzyme yields only dimers. The CU18 L-threonine deaminase, is however, indistinguishable from the wild type enzyme in molecular weight and subunit composition.[1]

References

 
WikiGenes - Universities