Respiration-dependent uptake of dihydrostreptomycin by Escherichia coli. Its irreversible nature and lack of evidence for a uniport process.
The transport of [3H]dihydrostreptomycin into the cytoplasm of Escherichia coli was distinguished, by its respiration-dependent nature, from binding within the cell envelope. 1. Of the radiolabel in the cytoplasm, 70-90% was dissolved in, or quickly equilibrated with, the cytoplasmic aqueous phase because this proportion rapidly left cells treated with toluene or with butan-1-ol. 2. After a period of respiration-dependent uptake of [3H]dihydrostreptomycin, cells were washed repeatedly by centrifugation and resuspension. Radiolabel did not leave the cells at any appreciable rate. 3. Uptake of dihydrostreptomycin (at an exogenous concentration of 1 mg of base/ml) was monitored for 2h to an apparent equilibrium. Then the specific radioactivity of exogenous dihydrostreptomycin was raised without significantly altering its chemical concentration. There was no exchange of radiolabel between the exogenous pool and the cytoplasmic pool. 4. Dihydrostreptomycin was not taken up by respiring, cytoplasm-free membrane vesicles which accumulated L-proline in control experiments. These data support the view that respiration-dependent uptake of dihydrostreptomycin by E. coli is not simply a secondary translocation process such as uniport.[1]References
- Respiration-dependent uptake of dihydrostreptomycin by Escherichia coli. Its irreversible nature and lack of evidence for a uniport process. Nichols, W.W., Young, S.N. Biochem. J. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg