The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior.

Arg252 of fructose-6-phosphate 1-kinase (PFK) from Bacillus stearothermophilus has been proposed to be involved in the binding of the substrate Fru-6-P. We demonstrate here that mutation of this residue to alanine converts the enzyme to a form with characteristics similar to those of its allosterically tight form. The mutant enzyme exhibits a high affinity for its inhibitor phosphoenolpyruvate (a 68-fold difference compared to wild type) and a dramatically decreased Fru-6-P affinity (1500-fold increase in Km). It is more sensitive to inhibition by high ATP concentrations than the wild type, and this inhibition is relieved by ADP, GDP, or higher Fru-6-P concentrations. In contrast, mutation of Arg252 to lysine increases the affinity of the enzyme for P-enolpyruvate by only 2-fold and increases its Km for Fru-6-P by only 50-fold. Sigmoidal kinetics with respect to Fru-6-P in the presence of P-enolpyruvate were observed with Hill numbers of 2.2, 2.4, and 1.7 for wild-type B. stearothermophilus PFK and the Arg252 to lysine and to alanine mutations, respectively. Unlike fructose-6-phosphate 1-kinase from Escherichia coli, in the absence of P-enolpyruvate, B. stearothermophilus PFK exhibits a hyperbolic profile with respect to Fru-6-P concentration. B. stearothermophilus PFK is sensitive to inhibition by high ATP concentrations and competitively inhibited by GDP or ADP. Our data indicate that Arg252 of B. stearothermophilus PFK plays a major role in both Fru-6-P binding and allosteric interaction between the subunits. However, this residue does not seem to participate directly in the catalytic process.[1]

References

 
WikiGenes - Universities