The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

fructose-6P     [(2R,3R,4S)-2,3,4,6- tetrahydroxy-5-oxo...

Synonyms: D-fructose-6-P, fructose-6-P, fru-6-P, AG-K-71479, CHEBI:15946, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neuberg ester


Psychiatry related information on Neuberg ester


High impact information on Neuberg ester


Chemical compound and disease context of Neuberg ester


Biological context of Neuberg ester

  • The active site lies in the central domain, contains a single essential zinc atom, and forms a deep, open cavity of suitable dimensions to contain M6P or F6P The central domain is flanked by a helical domain on one side and a jelly-roll like domain on the other [17].
  • We have shown previously that bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (EC is phosphorylated by cAMP-dependent protein kinase and protein kinase C; phosphorylation results in activation of kinase [18].
  • We isolated and sequenced two overlapping cDNA fragments, which together could encode the complete amino acid sequence of bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase, a protein of 530 amino acids, with a calculated molecular weight of 60,679 [18].
  • Both native and phosphofructose-6-P,2-kinase show sigmoidal kinetics with respect to fructose-6-P with an apparent K0.5 of 15 microM and 50 microM, respectively [19].
  • The Kobs of fructose-1,6-P2 hydrolysis, sigma fructose-1,6-P2 equilibrium sigma fructose-6-P + sigma Pi, was found to vary with free [Mg2+], being 272 M at free [Mg2+] = 0 and 174 M at free [Mg2+] = 0.89 x 10(-3) M [20].

Anatomical context of Neuberg ester


Associations of Neuberg ester with other chemical compounds


Gene context of Neuberg ester


Analytical, diagnostic and therapeutic context of Neuberg ester


  1. Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior. Valdez, B.C., French, B.A., Younathan, E.S., Chang, S.H. J. Biol. Chem. (1989) [Pubmed]
  2. Fructose-6-phosphate cycling and the pentose cycle in hyperthyroidism. Magnusson, I., Wennlund, A., Chandramouli, V., Schumann, W.C., Kumaran, K., Wahren, J., Landau, B.R. J. Clin. Endocrinol. Metab. (1990) [Pubmed]
  3. Effects of calcium entry blocker emopamil on postischemic energy metabolism of the isolated perfused rat brain. Bielenberg, G.W., Haubruck, H., Krieglstein, J. J. Cereb. Blood Flow Metab. (1987) [Pubmed]
  4. Kinetic mechanism of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii. Bertagnolli, B.L., Cook, P.F. Biochemistry (1984) [Pubmed]
  5. Glutamine synthetase and fructose-1, 6-diphosphatase activity in the putamen of control and Huntington's disease brain post mortem. Carter, C.J. Life Sci. (1983) [Pubmed]
  6. Kinetic behaviour and regulatory properties of phosphofructokinase in rat bone marrow cells. Tejedor, M.C., Ramírez, A., Luque, J. Biochem. Int. (1984) [Pubmed]
  7. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Hammes, H.P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., Lin, J., Bierhaus, A., Nawroth, P., Hannak, D., Neumaier, M., Bergfeld, R., Giardino, I., Brownlee, M. Nat. Med. (2003) [Pubmed]
  8. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Chaput, M., Claes, V., Portetelle, D., Cludts, I., Cravador, A., Burny, A., Gras, H., Tartar, A. Nature (1988) [Pubmed]
  9. Role of the glucosamine pathway in fat-induced insulin resistance. Hawkins, M., Barzilai, N., Liu, R., Hu, M., Chen, W., Rossetti, L. J. Clin. Invest. (1997) [Pubmed]
  10. Suppression of glucose utilization of murine peritoneal exudate macrophages by body fluids from cancer patients and identification of the susceptible enzyme. Nakamura, K., Nakajima, Y., Nakamura, Y. J. Natl. Cancer Inst. (1986) [Pubmed]
  11. Changes in liver and gastric mucosal hexosamine synthesis after restraint. Sander, L.A., Chandler, A.M., JohnsonLR, n.u.l.l. Gastroenterology (1975) [Pubmed]
  12. From Lobry de Bruyn to enzyme-catalyzed ammonia channelling: molecular studies of D-glucosamine-6P synthase. Teplyakov, A., Leriche, C., Obmolova, G., Badet, B., Badet-Denisot, M.A. Natural product reports. (2002) [Pubmed]
  13. pH dependence of the reverse reaction catalyzed by phosphofructokinase I from Escherichia coli: implications for the role of Asp 127. Auzat, I., Garel, J.R. Protein Sci. (1992) [Pubmed]
  14. L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. Sprenger, G.A., Lengeler, J.W. J. Bacteriol. (1984) [Pubmed]
  15. Bifidobacterium scardovii sp. nov., from human sources. Hoyles, L., Inganäs, E., Falsen, E., Drancourt, M., Weiss, N., McCartney, A.L., Collins, M.D. Int. J. Syst. Evol. Microbiol. (2002) [Pubmed]
  16. Inorganic pyrophosphate: fructose-6-phosphate 1-phosphotransferase of the potato tuber is related to the major ATP-dependent phosphofructokinase of E. coli. Yuan, X.H., Kwiatkowska, D., Kemp, R.G. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  17. The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Cleasby, A., Wonacott, A., Skarzynski, T., Hubbard, R.E., Davies, G.J., Proudfoot, A.E., Bernard, A.R., Payton, M.A., Wells, T.N. Nat. Struct. Biol. (1996) [Pubmed]
  18. Bovine heart fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase: complete amino acid sequence and localization of phosphorylation sites. Sakata, J., Uyeda, K. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  19. Differences in kinetic properties of phospho and dephospho forms of fructose-6-phosphate, 2-kinase and fructose 2,6-bisphosphatase. Sakakibara, R., Kitajima, S., Uyeda, K. J. Biol. Chem. (1984) [Pubmed]
  20. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. Lawson, J.W., Veech, R.L. J. Biol. Chem. (1979) [Pubmed]
  21. Phosphofructokinase from Dirofilaria immitis. Stimulation of activity by phosphorylation with cyclic AMP-dependent protein kinase. Srinivasan, N.G., Wariso, B.A., Kulkarni, G., Rao, G.S., Harris, B.G. J. Biol. Chem. (1988) [Pubmed]
  22. Regulation of insulin-stimulated glycogen synthase activity by overexpression of glutamine: fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Crook, E.D., Daniels, M.C., Smith, T.M., McClain, D.A. Diabetes (1993) [Pubmed]
  23. Inhibition of GTP-utilizing enzymes by tyrphostins. Wolbring, G., Hollenberg, M.D., Schnetkamp, P.P. J. Biol. Chem. (1994) [Pubmed]
  24. Significance of the amino terminus of rat testis fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase. Tominaga, N., Minami, Y., Sakakibara, R., Uyeda, K. J. Biol. Chem. (1993) [Pubmed]
  25. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H., Hiramatsu, K. Antimicrob. Agents Chemother. (2000) [Pubmed]
  26. The cooperativity and allosteric inhibition of Escherichia coli phosphofructokinase depend on the interaction between threonine-125 and ATP. Auzat, I., Le Bras, G., Garel, J.R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  27. Molecularly cloned mammalian glucosamine-6-phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. Wolosker, H., Kline, D., Bian, Y., Blackshaw, S., Cameron, A.M., Fralich, T.J., Schnaar, R.L., Snyder, S.H. FASEB J. (1998) [Pubmed]
  28. The structure of "activation factor" for phosphofructokinase. Uyeda, K., Furuya, E., Sherry, A.D. J. Biol. Chem. (1981) [Pubmed]
  29. Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. Lin, K., Li, L., Correia, J.J., Pilkis, S.J. J. Biol. Chem. (1992) [Pubmed]
  30. Phosphofructokinase mutants of yeast. Biochemistry and genetics. Lobo, Z., Maitra, P.K. J. Biol. Chem. (1983) [Pubmed]
  31. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted. Diderich, J.A., Raamsdonk, L.M., Kruckeberg, A.L., Berden, J.A., Van Dam, K. Appl. Environ. Microbiol. (2001) [Pubmed]
  32. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Wu, C., Khan, S.A., Peng, L.J., Lange, A.J. Adv. Enzyme Regul. (2006) [Pubmed]
  33. A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. DeHaven, J.E., Robinson, K.A., Nelson, B.A., Buse, M.G. Diabetes (2001) [Pubmed]
  34. Liver (B-type) phosphofructokinase mRNA. Cloning, structure, and expression. Gehnrich, S.C., Gekakis, N., Sul, H.S. J. Biol. Chem. (1988) [Pubmed]
  35. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-. Guixé, V., Rodríguez, P.H., Babul, J. Biochemistry (1998) [Pubmed]
  36. Stability of mammalian lens phosphofructokinase. Cheng, H.M., Chylack, L.T., Chien, J., Barañano, E.C. Invest. Ophthalmol. Vis. Sci. (1977) [Pubmed]
  37. Glycolysis is operative in amphibian oocytes. Guixé, V., Preller, A., Kessi, E., Hofer, H.W., Ureta, T. FEBS Lett. (1994) [Pubmed]
  38. Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. Rosberg-Cody, E., Ross, R.P., Hussey, S., Ryan, C.A., Murphy, B.P., Fitzgerald, G.F., Devery, R., Stanton, C. Appl. Environ. Microbiol. (2004) [Pubmed]
WikiGenes - Universities