The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bacillus stearothermophilus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bacillus stearothermophilus

 

High impact information on Bacillus stearothermophilus

 

Chemical compound and disease context of Bacillus stearothermophilus

 

Biological context of Bacillus stearothermophilus

 

Anatomical context of Bacillus stearothermophilus

 

Gene context of Bacillus stearothermophilus

 

Analytical, diagnostic and therapeutic context of Bacillus stearothermophilus

References

  1. Structural determinants of the stability of thermolysin-like proteinases. Eijsink, V.G., Veltman, O.R., Aukema, W., Vriend, G., Venema, G. Nat. Struct. Biol. (1995) [Pubmed]
  2. Expression in Escherichia coli of genes encoding the E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex of Bacillus stearothermophilus and assembly of a functional E1 component (alpha 2 beta 2) in vitro. Lessard, I.A., Perham, R.N. J. Biol. Chem. (1994) [Pubmed]
  3. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L. J. Biol. Chem. (1985) [Pubmed]
  4. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. Skinner, R., Cundliffe, E., Schmidt, F.J. J. Biol. Chem. (1983) [Pubmed]
  5. A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. Zaar, A., Eisenreich, W., Bacher, A., Fuchs, G. J. Biol. Chem. (2001) [Pubmed]
  6. Crystal structure of a DExx box DNA helicase. Subramanya, H.S., Bird, L.E., Brannigan, J.A., Wigley, D.B. Nature (1996) [Pubmed]
  7. A large increase in enzyme-substrate affinity by protein engineering. Wilkinson, A.J., Fersht, A.R., Blow, D.M., Carter, P., Winter, G. Nature (1984) [Pubmed]
  8. Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Biesecker, G., Harris, J.I., Thierry, J.C., Walker, J.E., Wonacott, A.J. Nature (1977) [Pubmed]
  9. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Webster, T., Tsai, H., Kula, M., Mackie, G.A., Schimmel, P. Science (1984) [Pubmed]
  10. Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes. Xiong, Y., Li, F., Wang, J., Weiner, A.M., Steitz, T.A. Mol. Cell (2003) [Pubmed]
  11. Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus. Jedrzejas, M.J., Chander, M., Setlow, P., Krishnasamy, G. EMBO J. (2000) [Pubmed]
  12. Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts. Lacalle, R.A., Tercero, J.A., Jiménez, A. EMBO J. (1992) [Pubmed]
  13. Structure of the arginine repressor from Bacillus stearothermophilus. Ni, J., Sakanyan, V., Charlier, D., Glansdorff, N., Van Duyne, G.D. Nat. Struct. Biol. (1999) [Pubmed]
  14. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Slotboom, D.J., Sobczak, I., Konings, W.N., Lolkema, J.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  15. Reevaluation of the accepted allosteric mechanism of phosphofructokinase from Bacillus stearothermophilus. Kimmel, J.L., Reinhart, G.D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  16. Structural evidence that alanine racemase from a D-cycloserine-producing microorganism exhibits resistance to its own product. Noda, M., Matoba, Y., Kumagai, T., Sugiyama, M. J. Biol. Chem. (2004) [Pubmed]
  17. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis. Koike-Takeshita, A., Koyama, T., Obata, S., Ogura, K. J. Biol. Chem. (1995) [Pubmed]
  18. The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system. A DNA-binding protein, regulated by HPr and iicbmtl-dependent phosphorylation. Henstra, S.A., Tuinhof, M., Duurkens, R.H., Robillard, G.T. J. Biol. Chem. (1999) [Pubmed]
  19. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. Yu, Y., Liu, Y., Shen, N., Xu, X., Xu, F., Jia, J., Jin, Y., Arnold, E., Ding, J. J. Biol. Chem. (2004) [Pubmed]
  20. Cross-linked amino acids in the protein pairs L3-L19 and L23-L29 of Bacillus stearothermophilus ribosomes after treatment with diepoxybutane. Herwig, S., Kruft, V., Eckart, K., Wittmann-Liebold, B. J. Biol. Chem. (1993) [Pubmed]
  21. The stereochemical course of phosphoryl transfer catalysed by Bacillus stearothermophilus and rabbit skeletal-muscle phosphofructokinase with a chiral [16O,17O,18O]phosphate ester. Jarvest, R.L., Lowe, G., Potter, B.V. Biochem. J. (1981) [Pubmed]
  22. Evidence for the glycoprotein nature of the crystalline cell wall surface layer of Bacillus stearothermophilus strain NRS2004/3a. Küpcü, Z., März, L., Messner, P., Sleytr, U.B. FEBS Lett. (1984) [Pubmed]
  23. Tamoxifen induces ultrastructural alterations in membranes of Bacillus Stearothermophilus. Luxo, C., Jurado, A.S., Madeira, V.M., Silva, M.T. Toxicology in vitro : an international journal published in association with BIBRA. (2003) [Pubmed]
  24. Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP7, a protein of the large subunit of the mitochondrial ribosome. Fearon, K., Mason, T.L. Mol. Cell. Biol. (1988) [Pubmed]
  25. Potassium functionally replaces the second lysine of the KMSKS signature sequence in human tyrosyl-tRNA synthetase. Austin, J., First, E.A. J. Biol. Chem. (2002) [Pubmed]
  26. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. Gagnon, Y., Breton, R., Putzer, H., Pelchat, M., Grunberg-Manago, M., Lapointe, J. J. Biol. Chem. (1994) [Pubmed]
  27. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. Wei, J.P., Srinivasan, C., Han, H., Valentine, J.S., Gralla, E.B. J. Biol. Chem. (2001) [Pubmed]
  28. The primary structure of rat ribosomal protein L7. The presence near the amino terminus of L7 of five tandem repeats of a sequence of 12 amino acids. Lin, A., Chan, Y.L., McNally, J., Peleg, D., Meyuhas, O., Wool, I.G. J. Biol. Chem. (1987) [Pubmed]
  29. Crystallization of lactate dehydrogenase from Bacillus stearothermophilus. Schär, H.P., Zuber, H., Rossmann, M.G. J. Mol. Biol. (1982) [Pubmed]
  30. Demonstration of two active sites on a monomeric aminoacyl-tRNA synthetase. Possible roles of negative cooperativity and half-of-the-sites reactivity in oligomeric enzymes. Fersht, A.R. Biochemistry (1975) [Pubmed]
  31. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. A kinetic model for the enzyme action. McAdam, M.E., Fox, R.A., Lavelle, F., Fielden, E.M. Biochem. J. (1977) [Pubmed]
  32. Competitive interaction of component enzymes with the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: kinetic analysis using surface plasmon resonance detection. Lessard, I.A., Fuller, C., Perham, R.N. Biochemistry (1996) [Pubmed]
  33. Circular dichroism and magnetic circular dichroism of iron-sulfur proteins. Stephens, P.J., Thomson, A.J., Dunn, J.B., Keiderling, T.A., Rawlings, J., Rao, K.K., Hall, D.O. Biochemistry (1978) [Pubmed]
 
WikiGenes - Universities