The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and its kinase domain in Escherichia coli.

The rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (ATP:D-fructose-6-phosphate 2-phosphotransferase/D-fructose-2,6-bisphosphate 2-phosphohydrolase, EC and its separate kinase domain were expressed in Escherichia coli by using an expression system based on bacteriophage T7 RNA polymerase. The bifunctional enzyme (470 residues per subunit) was efficiently expressed as a protein that starts with the initiator methionine residue and ends at the carboxyl-terminal tyrosine residue. The expressed protein was purified to homogeneity by anion exchange and Blue Sepharose chromatography and had kinetic and physical properties similar to the purified rat liver enzyme, including its behavior as a dimer during gel filtration, activation of the kinase by phosphate and inhibition by alpha-glycerol phosphate, and mediation of the bisphosphatase reaction by a phosphoenzyme intermediate. The expressed 6-phosphofructo-2-kinase also started with the initiator methionine but ended at residue 257. The partially purified kinase domain was catalytically active, had reduced affinities for ATP and fructose 6-phosphate compared with the kinase of the bifunctional enzyme, and had no fructose-2,6-bisphosphatase activity. The kinase domain also behaved as an oligomeric protein during gel filtration. The expression of an active kinase domain and the previous demonstration of an actively expressed bisphosphatase domain provide strong support for the hypothesis that the hepatic enzyme consists of two independent catalytic domains encoded by a fused gene.[1]


  1. Expression of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and its kinase domain in Escherichia coli. Tauler, A., Lange, A.J., el-Maghrabi, M.R., Pilkis, S.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
WikiGenes - Universities