GABAA responses in hippocampal neurons are potentiated by glutamate.
In the mammalian cortex, glutamate and gamma-aminobutyric acid (GABA) are the principal transmitters mediating excitatory and inhibitory synaptic events. Glutamate activates cation conductances that lead to membrane depolarization whereas GABA controls chloride conductances that produce hyperpolarization. Here we report that the GABAA-activated conductance in hippocampal pyramidal cells is enhanced by glutamate at concentrations below that required for its excitatory action. The GABA-potentiating effect can be induced, with comparable potency, by several glutamate analogues such as quisqualate, N-methyl-D-aspartate (NMDA), kainate and, surprisingly, by D-2-amino-5-phosphonovalerate (APV), an antagonist for NMDA receptors. Data from dose-response curves show that glutamate enhances the GABAA conductance without significantly changing GABA binding affinity. The low concentration of glutamate needed to enhance GABAA responses raises the possibility that glutamate modulates the strength of GABA-mediated transmission in the cortex.[1]References
- GABAA responses in hippocampal neurons are potentiated by glutamate. Stelzer, A., Wong, R.K. Nature (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg