The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Quisqualate     (2S)-2-amino-3-(3,5-dioxo- 1,2,4...

Synonyms: Tocris-0188, CHEMBL279956, SureCN136819, Q2128_SIGMA, CCG-205116, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of QUISQUALIC ACID

  • We therefore sought to determine whether antagonists active at the NMDA or quisqualate subtypes of L-glutamate receptors prevent toxicity of either MPP+ (1-methyl-4-phenyl-pyridinium ion, the active metabolite of MPTP) or the selective dopaminergic neurotoxin 6-OHDA in the rat substantia nigra pars compacta [1].
  • Using the N18-RE-105 neuroblastoma X retina cell line, we previously described Ca2(+)-dependent quisqualate-type glutamate toxicity caused by the inhibition of high-affinity cystine uptake, leading to glutathione depletion and accumulation of cellular oxidants [2].
  • Finally, pertussis toxin failed to inhibit muscarinic responses, whereas it blocked greater than 70% of the quisqualate stimulation [3].
  • 3. Quisqualate (QQ) and (RS)-2-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) excited many ganglion cells and were approximately as potent as KA [4].
  • The first effect, observed with anoxic incubation by itself, was the diminished quisqualate (10(-5) M)-stimulated accumulation of 3H-IPs degraded from prelabeled PI under prolonged anoxia [5].
 

Psychiatry related information on QUISQUALIC ACID

 

High impact information on QUISQUALIC ACID

 

Chemical compound and disease context of QUISQUALIC ACID

 

Biological context of QUISQUALIC ACID

  • The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site [19].
  • In the pH range between 6.6 and 8.0, changes in external [H+] had negligible influence on the amplitude and kinetics of the monovalent ion-carrying currents activated by the agonists quisqualate and kainate [20].
  • Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation [21]?
  • In addition, kainic acid elicited a nondesensitizing inward current at short latency, and quisqualate elicited a delayed oscillatory inward current, presumably mediated by a second-messenger system [22].
  • Transient transfection of this cDNA into two NAALADase-negative cell lines conferred NAAG-hydrolyzing activity that was inhibited by the NAALADase inhibitors quisqualic acid and beta-NAAG [23].
 

Anatomical context of QUISQUALIC ACID

 

Associations of QUISQUALIC ACID with other chemical compounds

 

Gene context of QUISQUALIC ACID

 

Analytical, diagnostic and therapeutic context of QUISQUALIC ACID

  • After intracortical infusion of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (DL-APV) for one day, iontophoretic responses to NMDA, to kainate, and to quisqualate revealed a receptor blockade specific to NMDA receptors and extending several millimeters from the cannula [39].
  • Hours after thorough washout of exogenously added quisqualate, micromolar concentrations could be detected in the bathing medium by high performance liquid chromatography [40].
  • Selective activation of NMDA receptors was achieved by deleting Mg2+ and including 3-10 microM glycine in the perfusion medium and by applying ligands in the presence of 30 microM quisqualate, which blocks the AMPA receptor and desensitizes the oocyte's own Ca(2+)-dependent Cl- current [41].
  • Intraspinal injection of quisqualic acid (QUIS) produces an excitotoxic injury that leads to the onset of behavioral syndromes, believed to be related to the clinical condition of chronic pain [42].
  • During EEG isoelectricity, AMPA binding was reduced by approximately 40%, which could represent quisqualate receptor desensitization [43].

References

  1. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Turski, L., Bressler, K., Rettig, K.J., Löschmann, P.A., Wachtel, H. Nature (1991) [Pubmed]
  2. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. Murphy, T.H., Schnaar, R.L., Coyle, J.T. FASEB J. (1990) [Pubmed]
  3. Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. Ambrosini, A., Meldolesi, J. J. Neurochem. (1989) [Pubmed]
  4. Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. Massey, S.C., Miller, R.F. J. Physiol. (Lond.) (1988) [Pubmed]
  5. Phosphoinositide breakdown in rat hippocampal slices: sensitivity to glutamate induced by in vitro anoxia. Ninomiya, H., Taniguchi, T., Fujiwara, M. J. Neurochem. (1990) [Pubmed]
  6. Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum. Dewar, D., Chalmers, D.T., Shand, A., Graham, D.I., McCulloch, J. Ann. Neurol. (1990) [Pubmed]
  7. Preventive action of quisqualic acid against grayanotoxin-induced suppression of locomotor activity in mice. Ohgaki, T., Uchida, S., Meguri, H., Ogita, K., Yoneda, Y. Neuropharmacology (1988) [Pubmed]
  8. Anticonvulsant profile of MDL 27,266: an orally active, broad-spectrum anticonvulsant agent. White, H.S., Patel, S., Meldrum, B.S. Epilepsy Res. (1992) [Pubmed]
  9. Simple and configural association learning in rats with bilateral quisqualic acid lesions of the nucleus basalis magnocellularis. Butt, A.E., Hodge, G.K. Behav. Brain Res. (1997) [Pubmed]
  10. Globus pallidus and motor initiation: the bilateral effects of unilateral quisqualic acid-induced lesion on reaction times in monkeys. Alamy, M., Trouche, E., Nieoullon, A., Legallet, E. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1994) [Pubmed]
  11. Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Dumuis, A., Pin, J.P., Oomagari, K., Sebben, M., Bockaert, J. Nature (1990) [Pubmed]
  12. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Davies, S.N., Lester, R.A., Reymann, K.G., Collingridge, G.L. Nature (1989) [Pubmed]
  13. Neurobiology. Quisqualate receptor antagonists. Foster, A.C. Nature (1988) [Pubmed]
  14. A new type of glutamate receptor linked to inositol phospholipid metabolism. Sugiyama, H., Ito, I., Hirono, C. Nature (1987) [Pubmed]
  15. Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. Chen, C.K., Silverstein, F.S., Fisher, S.K., Statman, D., Johnston, M.V. J. Neurochem. (1988) [Pubmed]
  16. Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus. Bolshakov VYu, n.u.l.l., Gapon, S.A., Magazanik, L.G. J. Physiol. (Lond.) (1991) [Pubmed]
  17. HU-211, a non-psychotropic cannabinoid, rescues cortical neurones from excitatory amino acid toxicity in culture. Eshhar, N., Striem, S., Biegon, A. Neuroreport (1993) [Pubmed]
  18. HA-966 (1-hydroxy-3-aminopyrrolidone-2) selectively reduces N-methyl-D-aspartate (NMDA)-mediated brain damage. McDonald, J.W., Uckele, J., Silverstein, F.S., Johnston, M.V. Neurosci. Lett. (1989) [Pubmed]
  19. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Greenamyre, J.T., Penney, J.B., Young, A.B., D'Amato, C.J., Hicks, S.P., Shoulson, I. Science (1985) [Pubmed]
  20. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Tang, C.M., Dichter, M., Morad, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation? Massicotte, G., Vanderklish, P., Lynch, G., Baudry, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  22. Coexpression of N-methyl-D-aspartate and phencyclidine receptors in Xenopus oocytes injected with rat brain mRNA. Kushner, L., Lerma, J., Zukin, R.S., Bennett, M.V. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  23. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Carter, R.E., Feldman, A.R., Coyle, J.T. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  24. Hyperpolarization of fish retinal horizontal cells by kainate and quisqualate. Hankins, M.W., Ruddock, K.H. Nature (1984) [Pubmed]
  25. NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Dumuis, A., Sebben, M., Haynes, L., Pin, J.P., Bockaert, J. Nature (1988) [Pubmed]
  26. Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Llano, I., Dreessen, J., Kano, M., Konnerth, A. Neuron (1991) [Pubmed]
  27. Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. Alonso, A., de Curtis, M., Llinás, R. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  28. Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, and gamma-aminobutyrate type A channels. Sigel, E., Baur, R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  29. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Murphy, T.H., Miyamoto, M., Sastre, A., Schnaar, R.L., Coyle, J.T. Neuron (1989) [Pubmed]
  30. Quisqualate and L-glutamate inhibit retinal horizontal-cell responses to kainate. Ishida, A.T., Neyton, J. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  31. Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Fagg, G.E., Matus, A. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  32. L-glutamate-induced depolarization in solitary photoreceptors: a process that may contribute to the interaction between photoreceptors in situ. Tachibana, M., Kaneko, A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  33. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Isaacson, J.S., Nicoll, R.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  34. The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. Chavis, P., Shinozaki, H., Bockaert, J., Fagni, L. J. Neurosci. (1994) [Pubmed]
  35. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues. Hermit, M.B., Greenwood, J.R., Bräuner-Osborne, H. J. Biol. Chem. (2004) [Pubmed]
  36. Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes. Frati, C., Marchese, C., Fisichella, G., Copani, A., Nasca, M.R., Storto, M., Nicoletti, F. J. Cell. Physiol. (2000) [Pubmed]
  37. Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. Netzeband, J.G., Parsons, K.L., Sweeney, D.D., Gruol, D.L. J. Neurophysiol. (1997) [Pubmed]
  38. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Kingston, A.E., Ornstein, P.L., Wright, R.A., Johnson, B.G., Mayne, N.G., Burnett, J.P., Belagaje, R., Wu, S., Schoepp, D.D. Neuropharmacology (1998) [Pubmed]
  39. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Miller, K.D., Chapman, B., Stryker, M.P. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  40. Non-NMDA receptor-mediated neurotoxicity in cortical culture. Koh, J.Y., Goldberg, M.P., Hartley, D.M., Choi, D.W. J. Neurosci. (1990) [Pubmed]
  41. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Curras, M.C., Dingledine, R. Mol. Pharmacol. (1992) [Pubmed]
  42. Spinal and supraspinal changes in opioid mRNA expression are related to the onset of pain behaviors following excitotoxic spinal cord injury. Abraham, K.E., McGinty, J.F., Brewer, K.L. Pain (2001) [Pubmed]
  43. Changes in excitatory amino acid receptor binding in the intact and decorticated rat neostriatum following insulin-induced hypoglycemia. Westerberg, E., Wieloch, T.W. J. Neurochem. (1989) [Pubmed]
 
WikiGenes - Universities