The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Pyramidal Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pyramidal Cells


Psychiatry related information on Pyramidal Cells


High impact information on Pyramidal Cells

  • However, only gp145trkB contains a long cytoplasmic region, which includes a catalytic tyrosine protein kinase domain. trkB transcripts coding for this protein were observed in the cerebral cortex and the pyramidal cell layer of the hippocampus [11].
  • Expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptors, indicating that stargazin-like mechanisms for targeting AMPA receptors may be widespread in the central nervous system [12].
  • We thus demonstrate that recurrent axon collaterals are newly sprouted by pyramidal cells as a consequence of axonal injury and suggest that this underlies the development of posttraumatic epilepsy [13].
  • We demonstrate here that transection of the mature axons of CA3 pyramidal cells in hippocampal slice cultures leads to the formation by CA3 pyramidal cells of new axon collaterals that are immunoreactive with the growth-associated protein GAP-43 [13].
  • Furthermore, pyramidal cells outperform P-receptor afferents in signalling the presence of temporal features in the stimulus waveform [14].

Chemical compound and disease context of Pyramidal Cells

  • The necrotic pyramidal cells being almost completely removed, significant increases in glucose utilization occurred in most layers of the CA1 sector at 2 and 3 weeks post ischemia, while widespread reductions prevailed in all other sectors and the dentate gyrus [15].
  • In this study, the pilocarpine model of spontaneous limbic epilepsy was used to induce mossy fiber sprouting (axonal growth of the dentate granule cells that synapse on the pyramidal cells of the CA3 region) to examine the prophylactic neuroprotective effects of lithium in vivo [16].
  • In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57%) in separate rats [17].
  • Effects of a new calcium channel blocker, KB-2796, on protein synthesis of the CA1 pyramidal cell and delayed neuronal death following transient forebrain ischemia [18].
  • Therefore, we suggest that the over-expression of PLK in the CA1 pyramidal cells at 12 h after ischemia may induce increase of GAD in the CA1 pyramidal cells, which plays an important role in delayed neuronal death via the increase of GABA or enhancement of GABA shunt pathway [19].

Biological context of Pyramidal Cells


Anatomical context of Pyramidal Cells


Associations of Pyramidal Cells with chemical compounds


Gene context of Pyramidal Cells

  • We show here that at the synapses between the mossy fiber terminals and dendrites of pyramidal cells in the CA3 area of adult mouse hippocampus, the nectin-afadin system colocalizes with the cadherin-catenin system, and nectin-1 and -3 asymmetrically localize at the pre- and postsynaptic sides of puncta adherentia junctions, respectively [35].
  • NPY neurons vastly outnumbered the neurotrophin-overexpressing neurons (mostly pyramidal cells), arguing for a spread of the neurotrophin signal via axonally connected neuronal populations [36].
  • These granules were also observed in CA1 pyramidal cells of the control mice but they were much fewer and contained no detectable levels of the NR2 subunit [37].
  • In the hippocampus, localizations of the two enzymes are strikingly different, with eNOS more concentrated in hippocampal pyramidal cells than in any other brain area, whereas nNOS is restricted to occasional interneurons [38].
  • Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI [39].

Analytical, diagnostic and therapeutic context of Pyramidal Cells


  1. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Grooms, S.Y., Opitz, T., Bennett, M.V., Zukin, R.S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Esclapez, M., Hirsch, J.C., Khazipov, R., Ben-Ari, Y., Bernard, C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. The temporal profile of 72-kDa heat-shock protein expression following global ischemia. Simon, R.P., Cho, H., Gwinn, R., Lowenstein, D.H. J. Neurosci. (1991) [Pubmed]
  4. Carboxypeptidase E (enkephalin convertase): mRNA distribution in rat brain by in situ hybridization. MacCumber, M.W., Snyder, S.H., Ross, C.A. J. Neurosci. (1990) [Pubmed]
  5. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Wiard, R.P., Dickerson, M.C., Beek, O., Norton, R., Cooper, B.R. Stroke (1995) [Pubmed]
  6. Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic? Palmer, A.M., Gershon, S. FASEB J. (1990) [Pubmed]
  7. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. Cataldo, A.M., Hamilton, D.J., Barnett, J.L., Paskevich, P.A., Nixon, R.A. J. Neurosci. (1996) [Pubmed]
  8. Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: relevance to REM sleep reactivation and memory consolidation. Booth, V., Poe, G.R. Hippocampus. (2006) [Pubmed]
  9. Dietary prenatal choline supplementation alters postnatal hippocampal structure and function. Li, Q., Guo-Ross, S., Lewis, D.V., Turner, D., White, A.M., Wilson, W.A., Swartzwelder, H.S. J. Neurophysiol. (2004) [Pubmed]
  10. Anticonvulsant action of phenobarbital, diazepam, carbamazepine, and diphenylhydantoin in the electroshock test in mice after lesion of hippocampal pyramidal cells with intracerebroventricular kainic acid. Czuczwar, S.J., Turski, L., Kleinrok, Z. Epilepsia (1982) [Pubmed]
  11. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Klein, R., Conway, D., Parada, L.F., Barbacid, M. Cell (1990) [Pubmed]
  12. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Chen, L., Chetkovich, D.M., Petralia, R.S., Sweeney, N.T., Kawasaki, Y., Wenthold, R.J., Bredt, D.S., Nicoll, R.A. Nature (2000) [Pubmed]
  13. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. McKinney, R.A., Debanne, D., Gähwiler, B.H., Thompson, S.M. Nat. Med. (1997) [Pubmed]
  14. From stimulus encoding to feature extraction in weakly electric fish. Gabbiani, F., Metzner, W., Wessel, R., Koch, C. Nature (1996) [Pubmed]
  15. Glucose utilization in rat hippocampus after long-term recovery from ischemia. Beck, T., Wree, A., Schleicher, A. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
  16. Chronic lithium treatment inhibits pilocarpine-induced mossy fiber sprouting in rat hippocampus. Cadotte, D.W., Xu, B., Racine, R.J., MacQueen, G.M., Wang, J.F., McEwen, B., Young, L.T. Neuropsychopharmacology (2003) [Pubmed]
  17. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Haas, K.Z., Sperber, E.F., Opanashuk, L.A., Stanton, P.K., Moshé, S.L. Hippocampus. (2001) [Pubmed]
  18. Effects of a new calcium channel blocker, KB-2796, on protein synthesis of the CA1 pyramidal cell and delayed neuronal death following transient forebrain ischemia. Yoshidomi, M., Hayashi, T., Abe, K., Kogure, K. J. Neurochem. (1989) [Pubmed]
  19. Changes of pyridoxal kinase expression and activity in the gerbil hippocampus following transient forebrain ischemia. Hwang, I.K., Yoo, K.Y., Kim, D.S., Eum, W.S., Park, J.K., Park, J., Kwon, O.S., Kang, T.C., Choi, S.Y., Won, M.H. Neuroscience (2004) [Pubmed]
  20. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Gulyás, A.I., Miles, R., Sík, A., Tóth, K., Tamamaki, N., Freund, T.F. Nature (1993) [Pubmed]
  21. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Malenka, R.C., Kauer, J.A., Zucker, R.S., Nicoll, R.A. Science (1988) [Pubmed]
  22. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Sah, P., Hestrin, S., Nicoll, R.A. Science (1989) [Pubmed]
  23. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Mack, V., Burnashev, N., Kaiser, K.M., Rozov, A., Jensen, V., Hvalby, O., Seeburg, P.H., Sakmann, B., Sprengel, R. Science (2001) [Pubmed]
  24. Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Quattrone, A., Pascale, A., Nogues, X., Zhao, W., Gusev, P., Pacini, A., Alkon, D.L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  25. Acetylcholine and memory. Hasselmo, M.E., Bower, J.M. Trends Neurosci. (1993) [Pubmed]
  26. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Klausberger, T., Márton, L.F., Baude, A., Roberts, J.D., Magill, P.J., Somogyi, P. Nat. Neurosci. (2004) [Pubmed]
  27. Molecular cloning and expression of a high affinity L-proline transporter expressed in putative glutamatergic pathways of rat brain. Fremeau, R.T., Caron, M.G., Blakely, R.D. Neuron (1992) [Pubmed]
  28. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Hillyard, D.R., Monje, V.D., Mintz, I.M., Bean, B.P., Nadasdi, L., Ramachandran, J., Miljanich, G., Azimi-Zoonooz, A., McIntosh, J.M., Cruz, L.J. Neuron (1992) [Pubmed]
  29. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Isackson, P.J., Huntsman, M.M., Murray, K.D., Gall, C.M. Neuron (1991) [Pubmed]
  30. A physiological role for GABAB receptors in the central nervous system. Dutar, P., Nicoll, R.A. Nature (1988) [Pubmed]
  31. GABAA responses in hippocampal neurons are potentiated by glutamate. Stelzer, A., Wong, R.K. Nature (1989) [Pubmed]
  32. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nadler, J.V., Perry, B.W., Cotman, C.W. Nature (1978) [Pubmed]
  33. Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Benardo, L.S., Prince, D.A. Nature (1982) [Pubmed]
  34. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Newberry, N.R., Nicoll, R.A. Nature (1984) [Pubmed]
  35. Nectin: an adhesion molecule involved in formation of synapses. Mizoguchi, A., Nakanishi, H., Kimura, K., Matsubara, K., Ozaki-Kuroda, K., Katata, T., Honda, T., Kiyohara, Y., Heo, K., Higashi, M., Tsutsumi, T., Sonoda, S., Ide, C., Takai, Y. J. Cell Biol. (2002) [Pubmed]
  36. Transcellular induction of neuropeptide Y expression by NT4 and BDNF. Wirth, M.J., Patz, S., Wahle, P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  37. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Fukaya, M., Kato, A., Lovett, C., Tonegawa, S., Watanabe, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  38. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Dinerman, J.L., Dawson, T.M., Schell, M.J., Snowman, A., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  39. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Wirth, M.J., Brun, A., Grabert, J., Patz, S., Wahle, P. Development (2003) [Pubmed]
  40. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Zieglgänsberger, W., French, E.D., Siggins, G.R., Bloom, F.E. Science (1979) [Pubmed]
  41. Impairment of inhibitory synaptic transmission in mice lacking synapsin I. Terada, S., Tsujimoto, T., Takei, Y., Takahashi, T., Hirokawa, N. J. Cell Biol. (1999) [Pubmed]
  42. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Gao, W.J., Krimer, L.S., Goldman-Rakic, P.S. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  43. Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Ariano, M.A., Lewicki, J.A., Brandwein, H.J., Murad, F. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  44. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. Gould, E., Woolley, C.S., Frankfurt, M., McEwen, B.S. J. Neurosci. (1990) [Pubmed]
WikiGenes - Universities