The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chloride-ion stimulation of the tonoplast H+-translocating ATPase from Hevea brasiliensis (rubber tree) latex. A dual mechanism.

The effect of Cl- and other anions on the tonoplast H+-translocating ATPase (H+-ATPase) from Hevea brasiliensis (rubber tree) latex was investigated. Cl- and other anions stimulated the ATPase activity of tightly sealed vesicles prepared from Hevea tonoplast, with the following decreasing order of effectiveness: Cl- greater than Br- greater than SO4(2-) greater than NO3-. As indicated by the changes of the protonmotive potential difference, anion stimulation of tonoplast H+-ATPase was caused in part by the ability of these anions to dissipate the electrical potential. This interpretation assumes not a channelling of these anions against a membrane potential, negative-inside, but a modification of the permeability of these ions through the tonoplast membrane. In addition, Cl- and the other anions stimulated the ATPase activity solubilized from the tonoplast membrane. Consequently, the tonoplast H+-pumping ATPase can be considered as an anion-stimulated enzyme. These results are discussed in relation to various models described in the literature for the microsomal H+-ATPase systems claimed as tonoplast entities.[1]

References

 
WikiGenes - Universities