Incomplete dosage compensation in an evolving Drosophila sex chromosome.
Cellular autoradiography was used to measure relative rates of chromosomal RNA synthesis and to examine the regulatory phenomenon of X-linked dosage compensation in Drosophila miranda, a species containing two distinct, nonhomologous X chromosomes (X1 and X2). The X1 chromosome was found to be dosage-compensated, since the rate of RNA synthesis along the single X1 chromosome in males equaled that of both X1 chromosomes in females. Unlike other sex chromosomes that have been studied, the more recently evolved X2 heterochromosome exhibited regional differences in transcriptional activity when males and females were compared. The distal 10% of the X2 was not dosage-compensated, whereas the majority of an interior segment, representing 30% of the X2 chromosome's length, was found to be dosage-compensated. Our data are consistent with the idea that the evolution of X2 dosage compensation has paralleled the differentiation of the X2 sex chromosome. In addition, gene rearrangement seems to have accompanied the acquisition of a dosage-compensory mechanism in the X2.[1]References
- Incomplete dosage compensation in an evolving Drosophila sex chromosome. Strobel, E., Pelling, C., Arnheim, N. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg