The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Gene Rearrangement

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gene Rearrangement


Psychiatry related information on Gene Rearrangement


High impact information on Gene Rearrangement

  • Finally, IRF4 and IRF8 together control the termination of pre-B cell receptor signaling and thus promote differentiation to small pre-B cells undergoing light-chain gene rearrangements [7].
  • The generation of the earliest B cell progenitors depends on E2A and EBF, which coordinately activate the B cell gene expression program and immunoglobulin heavy-chain gene rearrangements at the onset of B-lymphopoiesis [7].
  • The products of three of the genes--IL-2RG, Jak3, and IL-7R alpha--are components of cytokine receptors, and the products of three more-RAG1, RAG2, and Artemis-are essential for effecting antigen receptor gene rearrangement [8].
  • Thus, mere membrane deposition of Ig, even with concomitant expression of bcl-2, terminates neither expression of RAG-1 and 2, nor secondary L chain gene rearrangements, nor does it allow the development of mature B cells [9].
  • However, recent findings suggest that early B cell development can occur without expression of surrogate L chain, without deposition of microH chains into membranes, without productive H chain gene rearrangements, and even without any rearrangements of Ig gene loci [9].

Chemical compound and disease context of Gene Rearrangement


Biological context of Gene Rearrangement


Anatomical context of Gene Rearrangement


Associations of Gene Rearrangement with chemical compounds


Gene context of Gene Rearrangement


Analytical, diagnostic and therapeutic context of Gene Rearrangement


  1. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. Thirman, M.J., Gill, H.J., Burnett, R.C., Mbangkollo, D., McCabe, N.R., Kobayashi, H., Ziemin-van der Poel, S., Kaneko, Y., Morgan, R., Sandberg, A.A. N. Engl. J. Med. (1993) [Pubmed]
  2. Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Oksenberg, J.R., Panzara, M.A., Begovich, A.B., Mitchell, D., Erlich, H.A., Murray, R.S., Shimonkevitz, R., Sherritt, M., Rothbard, J., Bernard, C.C. Nature (1993) [Pubmed]
  3. B cell development under the condition of allelic inclusion. Sonoda, E., Pewzner-Jung, Y., Schwers, S., Taki, S., Jung, S., Eilat, D., Rajewsky, K. Immunity (1997) [Pubmed]
  4. Human T cell gamma genes are frequently rearranged in B-lineage acute lymphoblastic leukemias but not in chronic B cell proliferations. Chen, Z., Le Paslier, D., Dausset, J., Degos, L., Flandrin, G., Cohen, D., Sigaux, F. J. Exp. Med. (1987) [Pubmed]
  5. T cell receptor beta chain gene rearrangements in lymphoproliferative disorders of large granular lymphocytes/natural killer cells. Rambaldi, A., Pelicci, P.G., Allavena, P., Knowles, D.M., Rossini, S., Bassan, R., Barbui, T., Dalla-Favera, R., Mantovani, A. J. Exp. Med. (1985) [Pubmed]
  6. A detailed analysis of the MECP2 gene: prevalence of recurrent mutations and gross DNA rearrangements in Rett syndrome patients. Bourdon, V., Philippe, C., Labrune, O., Amsallem, D., Arnould, C., Jonveaux, P. Hum. Genet. (2001) [Pubmed]
  7. Transcriptional control of early B cell development. Busslinger, M. Annu. Rev. Immunol. (2004) [Pubmed]
  8. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Buckley, R.H. Annu. Rev. Immunol. (2004) [Pubmed]
  9. Roles of IgH and L chains and of surrogate H and L chains in the development of cells of the B lymphocyte lineage. Melchers, F., Haasner, D., Grawunder, U., Kalberer, C., Karasuyama, H., Winkler, T., Rolink, A.G. Annu. Rev. Immunol. (1994) [Pubmed]
  10. Modification of DNA by glucose 6-phosphate induces DNA rearrangements in an Escherichia coli plasmid. Bucala, R., Model, P., Russel, M., Cerami, A. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  11. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Behm, F.G., Smith, F.O., Raimondi, S.C., Pui, C.H., Bernstein, I.D. Blood (1996) [Pubmed]
  12. Characterization of a DNA topoisomerase IIalpha gene rearrangement in adriamycin-resistant P388 leukemia: expression of a fusion messenger RNA transcript encoding topoisomerase IIalpha and the retinoic acid receptor alpha locus. McPherson, J.P., Brown, G.A., Goldenberg, G.J. Cancer Res. (1993) [Pubmed]
  13. RET tyrosine kinase signaling in development and cancer. Arighi, E., Borrello, M.G., Sariola, H. Cytokine Growth Factor Rev. (2005) [Pubmed]
  14. RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Kim, D.W., Hwang, J.H., Suh, J.M., Kim, H., Song, J.H., Hwang, E.S., Hwang, I.Y., Park, K.C., Chung, H.K., Kim, J.M., Park, J., Hemmings, B.A., Shong, M. Mol. Endocrinol. (2003) [Pubmed]
  15. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B.J., Cado, D., Robey, E. Cell (1997) [Pubmed]
  16. Immunoglobulin heavy-chain class switching in a pre-B cell line is accompanied by DNA rearrangement. Burrows, P.D., Beck-Engeser, G.B., Wabl, M.R. Nature (1983) [Pubmed]
  17. Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes. Pays, E., Guyaux, M., Aerts, D., Van Meirvenne, N., Steinert, M. Nature (1985) [Pubmed]
  18. A transcriptional enhancer 3' of C beta 2 in the T cell receptor beta locus. McDougall, S., Peterson, C.L., Calame, K. Science (1988) [Pubmed]
  19. T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Tycko, B., Palmer, J.D., Sklar, J. Science (1989) [Pubmed]
  20. Introduction of a mu immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody. Grosschedl, R., Weaver, D., Baltimore, D., Costantini, F. Cell (1984) [Pubmed]
  21. Evidence for clonal selection of gamma/delta T cells in response to a human pathogen. Uyemura, K., Deans, R.J., Band, H., Ohmen, J., Panchamoorthy, G., Morita, C.T., Rea, T.H., Modlin, R.L. J. Exp. Med. (1991) [Pubmed]
  22. Induction by interleukin-2 of oligoclonal expansion of cultured tumor-infiltrating lymphocytes. Fishleder, A.J., Finke, J.H., Tubbs, R., Bukowski, R.M. J. Natl. Cancer Inst. (1990) [Pubmed]
  23. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Bash, R.O., Crist, W.M., Shuster, J.J., Link, M.P., Amylon, M., Pullen, J., Carroll, A.J., Buchanan, G.R., Smith, R.G., Baer, R. Blood (1993) [Pubmed]
  24. Large granular lymphocyte proliferation: an analysis of T-cell receptor gene arrangement and expression and the effect of in vitro culture with inducing agents. Chan, W.C., Dahl, C., Waldmann, T., Link, S., Mawle, A., Nicholson, J., Bach, F.H., Bongiovanni, K., McCue, P.A., Winton, E.F. Blood (1988) [Pubmed]
  25. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Schlissel, M.S., Baltimore, D. Cell (1989) [Pubmed]
  26. An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Chen, Y.Y., Wang, L.C., Huang, M.S., Rosenberg, N. Genes Dev. (1994) [Pubmed]
  27. Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Chalker, D.L., Yao, M.C. Genes Dev. (2001) [Pubmed]
  28. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Chowdhury, D., Sen, R. Immunity (2003) [Pubmed]
  29. Induction of T-cell receptor-alpha and -beta mRNA in SL12 cells can occur by transcriptional and post-transcriptional mechanisms. Wilkinson, M.F., MacLeod, C.L. EMBO J. (1988) [Pubmed]
  30. p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Bogue, M.A., Zhu, C., Aguilar-Cordova, E., Donehower, L.A., Roth, D.B. Genes Dev. (1996) [Pubmed]
  31. DNA rearrangements located over 100 kb 5' of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Bedell, M.A., Brannan, C.I., Evans, E.P., Copeland, N.G., Jenkins, N.A., Donovan, P.J. Genes Dev. (1995) [Pubmed]
  32. Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Outram, S.V., Varas, A., Pepicelli, C.V., Crompton, T. Immunity (2000) [Pubmed]
  33. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Bertolino, E., Reddy, K., Medina, K.L., Parganas, E., Ihle, J., Singh, H. Nat. Immunol. (2005) [Pubmed]
  34. Pax5 activates immunoglobulin heavy chain V to DJ rearrangement in transgenic thymocytes. Hsu, L.Y., Liang, H.E., Johnson, K., Kang, C., Schlissel, M.S. J. Exp. Med. (2004) [Pubmed]
  35. Clonal diversity in the B cell repertoire of patients with X-linked agammaglobulinemia. Anker, R., Conley, M.E., Pollok, B.A. J. Exp. Med. (1989) [Pubmed]
  36. Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. Zou, Y.R., Takeda, S., Rajewsky, K. EMBO J. (1993) [Pubmed]
  37. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Küppers, R., Rajewsky, K., Zhao, M., Simons, G., Laumann, R., Fischer, R., Hansmann, M.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  38. AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Taki, T., Kano, H., Taniwaki, M., Sako, M., Yanagisawa, M., Hayashi, Y. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  39. BCL6 gene translocation in follicular lymphoma: a harbinger of eventual transformation to diffuse aggressive lymphoma. Akasaka, T., Lossos, I.S., Levy, R. Blood (2003) [Pubmed]
WikiGenes - Universities