Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein.
The haemagglutinin molecule on the bovine enteric coronavirus has been identified as a glycoprotein of 140K composed of disulphide-linked subunits of 65K. In this study, we have shown the subunits to be identical by demonstrating an unambiguous amino-terminal amino acid sequence. The unglycosylated subunit was found to have an Mr of 42.5K and to undergo rapid disulphide linkage and glycosylation. Glycosylation was found to be of the asparagine-linked type and some of the oligosaccharides underwent processing to complex forms. Studies with inhibitors of glycosylation suggested that a processing of the haemagglutinin oligosaccharide takes place on the virion whilst it is in the Golgi apparatus. Each haemagglutinin subunit on the mature virion was estimated to possess six or seven carbohydrate chains of either the high-mannose or hybrid type, and three or four chains of the complex type.[1]References
- Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. Hogue, B.G., Kienzle, T.E., Brian, D.A. J. Gen. Virol. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg