Effects of N-substitution on the activation mechanisms of 4-hydroxycyclophosphamide analogues.
The activation mechanisms of the N-substituted 4-hydroxycyclophosphamide analogues 4-hydroxyifosfamide (2b), 4-hydroxytrofosfamide (2c), and 3-methyl-4-hydroxycyclophosphamide (2d) were compared with that of the unsubstituted parent compound 2a. The reaction kinetics of cis-2b, -2c, and -2d are qualitatively similar to those of 2a in that they undergo ring opening to the respective aldophosphamide intermediates 3, which can reclose to the cis- or trans-4-hydroxy isomers or undergo base-catalyzed beta-elimination to generate the corresponding phosphoramide mustard products 4. In contrast to the general acid catalysis observed for ring opening of 2a and 2d, the N-(chloroethyl)-substituted analogues 2b and 2c undergo specific base-catalyzed ring opening. This mechanistic difference was also illustrated by the rapid reaction of 2a and 2d with sodium 2-mercaptoethanesulfonate (Mesna) under acidic conditions to give the 4-(alkylthio)-substituted cyclophosphamide derivatives 5a and 5d. Compounds 2b and 2c did not react with Mesna to generate 5b and 5c under these conditions. Both the fraction of aldehyde/hydrate present at equilibrium and the cytotoxicity against L1210 cells in vitro decreased in the order 2c greater than 2b greater than 2a greater than 2d. The plasma-catalyzed acceleration of phosphoramide mustard generation previously reported for 2a was also observed for these analogues.[1]References
- Effects of N-substitution on the activation mechanisms of 4-hydroxycyclophosphamide analogues. Kwon, C.H., Borch, R.F. J. Med. Chem. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg