The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis.

Ascorbic acid requirements for norepinephrine biosynthesis were investigated in intact bovine chromaffin granules using the physiologic substrate dopamine and a novel coulometric electrochemical detection high pressure liquid chromatography system for ascorbic acid. 10 mM external dopamine, 1 mM Mg-ATP, and 1 mM ascorbic acid produced maximal norepinephrine biosynthesis without granule lysis. When external ascorbic acid was omitted, intragranular ascorbic acid was consumed in a 1:1 ratio with respect to norepinephrine biosynthesis. The initial concentration of intragranular ascorbic acid was 10.5 mM, which was depleted in stepwise fashion to 15 lower concentrations over the range of 9.2-0.2 mM. Chromaffin granules containing these varying concentrations of intragranular ascorbic acid were then incubated with 1 mM exogenous ascorbic acid, and norepinephrine biosynthesis from dopamine was determined. The apparent Km of norepinephrine biosynthesis for intragranular ascorbic acid was 0.57 mM by Eadie-Hofstee analysis and 0.68 mM by Lineweaver-Burk analysis. These data indicate that intragranular ascorbic acid is available and required for norepinephrine biosynthesis, that ascorbic acid is a true co-substrate for dopamine beta-monooxygenase, and that intragranular ascorbic acid is maintained by extragranular ascorbic acid. Continued norepinephrine biosynthesis in granules is dependent on both intragranular and extragranular concentrations of the vitamin. Furthermore, in situ kinetics of dopamine beta-monooxygenase for ascorbic acid may be most accurately determined using intact granules and the true physiologic substrate.[1]

References

  1. Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis. Dhariwal, K.R., Washko, P., Hartzell, W.O., Levine, M. J. Biol. Chem. (1989) [Pubmed]
 
WikiGenes - Universities