The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chromaffin Granules

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chromaffin Granules

 

High impact information on Chromaffin Granules

 

Biological context of Chromaffin Granules

 

Anatomical context of Chromaffin Granules

 

Associations of Chromaffin Granules with chemical compounds

 

Gene context of Chromaffin Granules

 

Analytical, diagnostic and therapeutic context of Chromaffin Granules

References

  1. Cleavage of proenkephalin by a chromaffin granule processing enzyme. Lindberg, I., Thomas, G. Endocrinology (1990) [Pubmed]
  2. Monensin inhibits catecholamine synthesis in pheochromocytoma cells. Vaccaro, K.K., Liang, B.T., Sheard, B.E., Perlman, R.L. J. Pharmacol. Exp. Ther. (1982) [Pubmed]
  3. Protein from chromaffin granules promotes survival of mesencephalic dopaminergic neurons by an EGF-receptor ligand-mediated mechanism. Krieglstein, K., Unsicker, K. J. Neurosci. Res. (1997) [Pubmed]
  4. Substance P in tumors: pheochromocytoma and carcinoid. Gamse, R., Saria, A., Bucsics, A., Lembeck, F. Peptides (1981) [Pubmed]
  5. Immunocytochemical localization of tyrosine hydroxylase in rat adrenal medulla by the peroxidase labeled antibody method: effects of enzyme activation on ultrastructural distribution of the enzyme. Stephens, J.K., Masserano, J.M., Vulliet, P.R., Weiner, N., Nakane, P.K. Brain Res. (1981) [Pubmed]
  6. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Stewart, L.C., Klinman, J.P. Annu. Rev. Biochem. (1988) [Pubmed]
  7. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Fricker, L.D., Evans, C.J., Esch, F.S., Herbert, E. Nature (1986) [Pubmed]
  8. Clathrin light chains and secretory vesicle binding proteins are distinct. Creutz, C.E., Harrison, J.R. Nature (1984) [Pubmed]
  9. Calcium-induced displacement of membrane-associated particles upon aggregation of chromaffin granules. Schober, R., Nitsch, C., Rinne, U., Morris, S.J. Science (1977) [Pubmed]
  10. Chromogranin A: a surprising link between granule biogenesis and hypertension. Kim, T., Loh, Y.P. J. Clin. Invest. (2005) [Pubmed]
  11. Bovine chromaffin granule membranes undergo Ca(2+)-regulated exocytosis in frog oocytes. Scheuner, D., Logsdon, C.D., Holz, R.W. J. Cell Biol. (1992) [Pubmed]
  12. Characterization of the monoamine carrier of chromaffin granule membrane by binding of [2-3H]dihydrotetrabenazine. Scherman, D., Jaudon, P., Henry, J.P. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  13. Development of chromaffin cells depends on MASH1 function. Huber, K., Brühl, B., Guillemot, F., Olson, E.N., Ernsberger, U., Unsicker, K. Development (2002) [Pubmed]
  14. Ascorbic acid regeneration in chromaffin granules. In situ kinetics. Dhariwal, K.R., Shirvan, M., Levine, M. J. Biol. Chem. (1991) [Pubmed]
  15. GAIP is membrane-anchored by palmitoylation and interacts with the activated (GTP-bound) form of G alpha i subunits. De Vries, L., Elenko, E., Hubler, L., Jones, T.L., Farquhar, M.G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Coenzyme A glutathione disulfide. A potent vasoconstrictor derived from the adrenal gland. Schlüter, H., Meissner, M., van der Giet, M., Tepel, M., Bachmann, J., Gross, I., Nordhoff, E., Karas, M., Spieker, C., Witzel, H. Circ. Res. (1995) [Pubmed]
  17. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. Nakata, T., Hirokawa, N. J. Neurosci. (1992) [Pubmed]
  18. In chromaffin cells, the mammalian Sec1p homologue is a syntaxin 1A-binding protein associated with chromaffin granules. Hodel, A., Schäfer, T., Gerosa, D., Burger, M.M. J. Biol. Chem. (1994) [Pubmed]
  19. Molecular cloning of endopin 1, a novel serpin localized to neurosecretory vesicles of chromaffin cells. Inhibition of basic residue-cleaving proteases by endopin 1. Hwang, S.R., Steineckert, B., Yasothornsrikul, S., Sei, C.A., Toneff, T., Rattan, J., Hook, V.Y. J. Biol. Chem. (1999) [Pubmed]
  20. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. Wiedemann, C., Schäfer, T., Burger, M.M. EMBO J. (1996) [Pubmed]
  21. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Brown, E.M., Pazoles, C.J., Creutz, C.E., Aurbach, G.D., Pollard, H.B. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  22. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Pollard, H.B., Tack-Goldman, K., Pazoles, C.J., Creutz, C.E., Shulman, N.R. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  23. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Mandel, M., Moriyama, Y., Hulmes, J.D., Pan, Y.C., Nelson, H., Nelson, N. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  24. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). Brownawell, A.M., Creutz, C.E. J. Biol. Chem. (1997) [Pubmed]
  25. The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. Sambade, M., Kane, P.M. J. Biol. Chem. (2004) [Pubmed]
  26. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Pomorski, T., Lombardi, R., Riezman, H., Devaux, P.F., van Meer, G., Holthuis, J.C. Mol. Biol. Cell (2003) [Pubmed]
  27. Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-Ret. Allmendinger, A., Stoeckel, E., Saarma, M., Unsicker, K., Huber, K. Mech. Dev. (2003) [Pubmed]
  28. Chromogranin B: isolation from pheochromocytoma, N-terminal sequence, tissue distribution and secretory vesicle processing. Gill, B.M., Barbosa, J.A., Dinh, T.Q., Garrod, S., O'Connor, D.T. Regul. Pept. (1991) [Pubmed]
  29. Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis. Dhariwal, K.R., Washko, P., Hartzell, W.O., Levine, M. J. Biol. Chem. (1989) [Pubmed]
  30. Identification of kex2-related proteases in chromaffin granules by partial amino acid sequence analysis. Christie, D.L., Batchelor, D.C., Palmer, D.J. J. Biol. Chem. (1991) [Pubmed]
  31. Subcellular distribution of 65,000 calmodulin-binding protein (p65) and synaptophysin (p38) in adrenal medulla. Fournier, S., Novas, M.L., Trifaró, J.M. J. Neurochem. (1989) [Pubmed]
  32. SNAP-25 is present on chromaffin granules and acts as a SNAP receptor. Tagaya, M., Genma, T., Yamamoto, A., Kozaki, S., Mizushima, S. FEBS Lett. (1996) [Pubmed]
 
WikiGenes - Universities