The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Adenosine receptors linked to adenylate cyclase activity in human neuroblastoma cells: modulation during cell differentiation.

In IMR32 neuroblastoma cells, the two adenosine receptor agonists N6-R-phenylisopropyladenosine and 5'-N-ethylcarboxamidoadenosine dose-dependently stimulated membrane adenylate cyclase activity with potencies consistent with the presence of adenosine receptors of the A2-subtype. The S enantiomer of N6-R-phenylisopropyladenosine induced a significantly lower stimulation of adenylate cyclase, accordingly to its lower ability to activate adenosine receptors. These effects were selectively counteracted by the adenosine receptor antagonist theophylline and, conversely, were not affected by the A1-adenosine receptor selective blocker 8-cyclopentyl-1,3-dipropylxanthine. No adenosine receptors belonging to the A1-subtype seem, therefore, to be present in this cell line, as also shown by the lack of inhibitory activity of N6-R-phenylisopropyladenosine on both basal and forskolin-stimulated adenylate cyclase activity. Activation of A2-receptors did not modify intracellular basal calcium levels, did not influence calcium influx through voltage-dependent calcium channels and did not modify calcium influx and redistribution induced by muscarinic receptor activation. Prolonged exposure of cells to either N6-R-phenylisopropyladenosine or 5'-N-ethylcarboxamidoadenosine was associated with a small but significant degree of morphological differentiation, comparable to that induced by dibutyryl cAMP, and therefore presumably related to the prolonged increase of intracellular cAMP levels elicited by the two adenosine agonists. After cellular differentiation induced with either dibutyryl cAMP or 5-bromodeoxyuridine, a selective desensitization of A2-receptor stimulated adenylate cyclase activity was found.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

 
WikiGenes - Universities