The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Metabolism of triiodothyronine in rat hepatocytes.

The metabolism of T3 by isolated rat hepatocytes was analyzed by Sephadex LH-20 chromatography, HPLC, and RIA for T3 sulfate (T3S) and 3,3'-diiodothyronine (3,3'-T2). Type I iodothyronine deiodinase activity was inhibited with propylthiouracil (PTU), and phenol sulfotransferase activity by SO4(2-) depletion or with competitive substrates or inhibitors. Under normal conditions, labeled T3 glucuronide and I- were the main products of [3'-125I]T3 metabolism. Iodide production was decreased by inhibition (PTU) or saturation (greater than 100 nM T3) of type I deiodinase, which was accompanied by the accumulation of T3S and 3,3'-T2S. Inhibition of phenol sulfotransferase resulted in decreased iodide production, which was associated with an accumulation of 3,3'-T2 and 3,3'-T2 glucuronide, independent of PTU. Formation of 3,3'-T2 and its conjugates was only observed at T3 substrate concentrations below 10 nM. Thus, T3 is metabolized in rat liver cells by three quantitatively important pathways: glucuronidation, sulfation, and direct inner ring deiodination. Whereas T3 glucuronide is not further metabolized in the cultures, T3S is rapidly deiodinated by the type I enzyme. As confirmed by incubations with isolated rat liver microsomes, direct inner ring deiodination of T3 is largely mediated by a low Km, PTU-insensitive, type III-like iodothyronine deiodinase, and production of 3,3'-T2 is only observed if its rapid sulfation is prevented.[1]


  1. Metabolism of triiodothyronine in rat hepatocytes. Rooda, S.J., Otten, M.H., van Loon, M.A., Kaptein, E., Visser, T.J. Endocrinology (1989) [Pubmed]
WikiGenes - Universities