The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Gly-Pro-Arg-Pro modifies the glutamine residues in the alpha- and gamma-chains of fibrinogen: inhibition of transglutaminase cross-linking.

During blood clotting Factor XIIIa, a transglutaminase, catalyzes the formation of covalent bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of peptide-bound glutamine residues between fibrin molecules. We report that glycyl-L-prolyl-L-arginyl-L-proline (GPRP), a tetrapeptide that binds to the fibrin polymerization sites (D-domain) in fibrin(ogen), inhibits transglutaminase cross-linking by modifying the glutamine residues in the alpha- and gamma-chains of fibrinogen. Purified platelet Factor XIIIa, and tissue transglutaminase from adult bovine aortic endothelial cells were used for the cross-linking studies. Gly-Pro (GP) and Gly-Pro-Gly-Gly (GPGG), peptides which do not bind to fibrinogen, had no effect on transglutaminase cross-linking. GPRP inhibited platelet Factor XIIIa-catalyzed cross-linking between the gamma-chains of the following fibrin(ogen) derivatives: fibrin monomers, fibrinogen and polymerized fibrin fibers. GPRP functioned as a reversible, noncompetitive inhibitor of Factor XIIIa-catalyzed incorporation of [3H]putrescine and [14C]methylamine into fibrinogen and Fragment D1. GPRP did not inhibit 125I-Factor XIIIa binding to polymerized fibrin, demonstrating that the Factor XIIIa binding sites on fibrin were not modified. GPRP also had no effect on Factor XIIIa cross-linking of [3H]putrescine to casein. This demonstrates that GPRP specifically modified the glutamine cross-linking sites in fibrinogen, and had no effect on either Factor XIIIa or the lysine residues in fibrinogen. GPRP also inhibited [14C]putrescine incorporation into the alpha- and gamma-chains of fibrinogen without inhibiting beta-chain incorporation, suggesting that the intermolecular cross-linking sites were selectively affected. Furthermore, GPRP inhibited tissue transglutaminase-catalyzed incorporation of [3H]putrescine into both fibrinogen and Fragment D1, without modifying [3H]putrescine incorporation into casein. GPRP also inhibited intermolecular alpha-alpha-chain cross-linking catalyzed by tissue transglutaminase. This demonstrates that the glutamine residues in the alpha-chains involved in intermolecular cross-linking are modified by GPRP. This is the first demonstration that a molecule binding to the fibrin polymerization sites on the D-domain of fibrinogen modifies the glutamine cross-linking sites on the alpha- and gamma-chains of fibrinogen.[1]


WikiGenes - Universities