Ecto-ATPase of mammalian synaptosomes: identification and enzymic characterization.
Intact synaptosomes isolated from mammalian brain tissues (rat, mouse, gerbil, and human) have an ATP hydrolyzing enzyme activity on their external surface. The synaptosomal ecto-ATPase(s) possesses characteristics consistent with those that have been described for ecto-ATPases of various other cell types. The enzyme has a high affinity for ATP (the apparent Km values are in the range of 2-5 X 10(-5) M), and is apparently stimulated equally well by either Mg2+ or Ca2+ in the absence of any other cations. The apparent activation constant for both divalent cations is approximately 4 X 10(-4) M in all mammalian brain tissues studied. The involvement of a non-specific phosphatase in the hydrolysis of externally added ATP is excluded. ATP hydrolysis is maximal in the pH range 7.4-7.8 for both divalent cation-dependent ATPase activities. Dicyclohexylcarbodiimide, 2,4-dinitrophenol, trifluoperazine, chlorpromazine, and p-chloromercuribenzoate (50 microM) inhibit the ecto-ATPase, whereas ouabain (1 mM) and oligomycin (3.5 micrograms X mg-1 protein) show little or no inhibition of this enzyme activity. Inhibitor data suggest that the Mg2+- and Ca2+-dependent ecto-ATPase may represent two different enzymes on the surface of synaptosomes.[1]References
- Ecto-ATPase of mammalian synaptosomes: identification and enzymic characterization. Nagy, A.K., Shuster, T.A., Delgado-Escueta, A.V. J. Neurochem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg