The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Isolation of terminal cisternae of frog skeletal muscle. Calcium storage and release properties.

Sarcoplasmic reticulum (SR) terminal cisternae (TC) of frog (Rana esculenta) fast-twitch skeletal muscle have been purified by isopycnic sucrose density gradient centrifugation. Biochemical characteristics and Ca2+ release properties have been investigated and compared to those of the homologous fraction of rabbit skeletal muscle TC. The frog SR fraction obtained at the 38/45% sucrose interface appears to be derived from the terminal cisternae region as judged by: (a) thin section electron microscopy showing vesicles containing electron opaque material and squarelike (feet) projections at the outer surface; (b) protein composition (Ca2+-ATPase, calsequestrin, and high Mr proteins); (c) Ca2+ fluxes properties. The content of calsequestrin was higher in frog TC by 50% and the Ca2+ binding capacity (624 or 45 nmol of Ca2+/mg of TC protein, depending upon experimental conditions) was 3-4 times that of rabbit TC. Species-specific antigenic differences were found between junctional SR proteins of frog and rabbit TC. After active Ca2+ preloading in the presence of pyrophosphate (Palade, P. (1987) J. Biol. Chem. 262, 6135-6141), caffeine and doxorubicin elicited Ca2+ release from either TC fraction but with much faster rates in frog TC than in rabbit TC (14 versus 3 mumol of Ca2+/min/mg of protein). The present results provide new evidence for the existence of marked differences in Ca2+ release properties between TC of amphibian and mammalian fast-twitch muscle. Higher Ca2+ binding capacity and faster release rates in frog TC might compensate for the comparably greater diffusion distance being covered by the released Ca2+ from the Z-line to the actomyosin cross-bridges in the A-I overlap region.[1]

References

  1. Isolation of terminal cisternae of frog skeletal muscle. Calcium storage and release properties. Volpe, P., Bravin, M., Zorzato, F., Margreth, A. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities