The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

R 59 022, a diacylglycerol kinase inhibitor. Its effect on diacylglycerol and thrombin-induced C kinase activation in the intact platelet.

R 59 022 (6-[2-[4-[(4-fluorophenyl) phenylmethylene)-1-piperidinyl]ethyl]-7-methyl-5H-thiazolo[3,2-alpha] pyrimidin-5-one) was found to inhibit diacylglycerol kinase in human red blood cell membranes at concentrations where polyphosphoinositide phosphodiesterase, phosphatidylinositol kinase, and phosphatidylinositol 4-phosphate kinase activity remained unaffected. The concentration needed for half-maximal inhibition (IC50) was 2.8 +/- 1.5 X 10(-6) M for the kinase acting on endogenous diacylglycerol and 3.3 +/- 0.4 X 10(-6) M when 1-oleoyl-2-acetylglycerol (OAG) was added exogenously as substrate. In intact platelets, R 59 022 inhibits the phosphorylation of OAG to 1-oleoyl-2-acetylglyceryl-3-phosphoric acid (OAPA) (IC50: 3.8 +/- 1.2 X 10(-6) M); concomitantly the stimulation of protein kinase C activity by OAG was amplified. When in platelets inositol lipid turnover is accelerated by thrombin, further addition of R 59 022 results in a marked elevation of diacylglycerol levels, a decreased formation of phosphatidic acid and an increased protein kinase C activity as compared with the controls. It is concluded that in studies on the signal-transducing system coupled to inositol lipid metabolism R 59 022 might occupy a role comparable to cyclic AMP phosphodiesterase inhibitors, since it potentiates the effect of the putative second messenger diacylglycerol by preventing its rapid metabolism.[1]

References

 
WikiGenes - Universities