Enhancement by serotonin of tonic vibration and stretch reflexes in the decerebrate cat.
The effects of pharmacological manipulation of serotonergic systems on spinal reflexes were determined in the unanesthetized decerebrate cat. The prolonged motor output that continues after cessation of high frequency longitudinal tendon vibration was strongly enhanced by the serotonin reuptake blocker fluoxetine and the serotonin precursor 5-hydroxytryptophan, and was decreased by the serotonin receptor antagonist methysergide. In addition, both dynamic and static stretch reflex stiffness was markedly increased by fluoxetine and 5-hydroxytryptophan, while methysergide produced a decrease in stretch reflex stiffness. These powerful effects on tonic vibration and stretch reflexes could not be explained by drug-induced alterations in muscle spindle primary afferent discharge. In light of other recent results on serotonin-mediated effects on motoneurons, we believe that the effects of these agents result from modification of an intrinsically mediated prolonged depolarization of spinal neurons. However, the possibility that these drugs modify longlasting discharge in associated interneuronal pathways cannot be ruled out.[1]References
- Enhancement by serotonin of tonic vibration and stretch reflexes in the decerebrate cat. Carp, J.S., Rymer, W.Z. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg