The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA repair dependence of somatic mutagenesis of transposon-caused white alleles in Drosophila melanogaster after treatment with alkylating agents.

DNA repair-defective alleles of the mei-9, mei-41, mus-104 and mus-101 loci of Drosophila melanogaster were introduced into stocks bearing the UZ and SZ marker sets. Males with the UZ marker set, z1 (zeste allele) and w+(TE) (genetically unstable white allele presumably caused by a transposable element), or the SZ marker set, z1 and w+R (semistable white allele caused by partial duplication of the w+ locus plus transposon insert), were exposed to EMS at the first instar. After emergence, adult males bearing red spots on lemon-yellow eyes were scored as flies with somatic reversions of w+(TE) or w+R. The relative mutabilities (relative values of reversion frequency at an equal EMS dose) of either w+(TE) or w+R in a repair-proficient strain and in mei-9, mei-41, mus-104 and mus-101 strains were 1: approximately 1.2:0.3:0.3:0.7, despite the fact that w+(TE) reverted two to three times as frequently as w+R under both the repair-proficient and repair-deficient genetic conditions. Similarly, after treatment with MMS, MNNG and ENNG, w+(TE) was somatically more mutable in the mei-9 strain and less mutable in the mei-41 and mus-104 strains than in the repair-proficient strain. From these results, we propose that mutagenic lesions produced in DNA by treatment with these chemicals are converted to mutant DNA sequences via the error-prone repair mechanisms dependent on the products of the genes mei-41+ (mei-41 and mus-104 being alleles of the same locus) and mus-101+, whereas they are eliminated by mei-9+-dependent excision repair. In contrast to the approximately linear responses of induced reversions of w+(TE) with ENNG in the repair-proficient, mei-9, and mei-41 strains, seemingly there were dosage insensitive ranges for induced reversion with MNNG in the repair-proficient and mei-41 strains, but not for reversion in the mei-9 strain; w+(TE) in the mus-104 strain was virtually nonmutable with MNNG and ENNG. These results suggest that O6-methylguanine (O6MeG) produced in DNA with MNNG, but not O6-ethylguanine produced with ENNG, is almost completely repaired in a low dose range by constitutive activity of DNA O6MeG transmethylase. From the distribution of clone sizes of spontaneous revertant spots and other data, we propose that both w+(TE) and w+R have a similar tendency to spontaneously revert more frequently at early rather than at later developmental stages probably reflecting a common property of their inserted transposons.[1]

References

 
WikiGenes - Universities