The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct. Kinetics, stoichiometry, and conductive pathways.

Cyclic AMP stimulates HCO3 secretion and Cl self-exchange in rabbit cortical collecting tubule. We found that varying peritubular [Cl] changed the Cl self-exchange rate with saturation kinetics (Km, 3-4 mM). HCO3 secretion also showed saturation kinetics as a function of mean luminal [Cl] (Km, 4-11 mM). Both Cl self-exchange and Cl-HCO3 exchange thus appear to be carrier-mediated. Addition/removal of basolateral HCO3 qualitatively changed Cl and HCO3 transport as expected for Cl-HCO3 exchange, but quantitatively changed Cl absorption more than HCO3 secretion. The diffusive Cl permeability and the transepithelial conductance in the presence of HCO3/CO2 and cAMP were higher than in their absence suggesting that HCO3/CO2 and cAMP together increase a conductive Cl pathway parallel to a 1:1 Cl-HCO3 exchanger. Thus, cAMP not only stimulates the overall process of anion exchange (probably by increasing an electroneutral exchanger and/or a series Cl conductance), but also stimulates a Cl conductance parallel to the exchange process.[1]

References

 
WikiGenes - Universities