The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Release of arachidonic acid and formation of oxygenated derivatives after complement attack on macrophages: role of channel formation.

Treatment of [3H]arachidonic acid ([3H]C20:4)-labeled, antibody-sensitized mouse resident peritoneal macrophages with rabbit serum complement, or C6-deficient rabbit serum + C6, caused hydrolytic release of incorporated [3H]C20:4 from phospholipids, followed by conversion to oxygenated derivatives. The C6 dose-response curve for release of C20:4 plus its metabolites was monotonic, which indicates dependence on channel formation, whereas the dose-response curve for lysis displayed multi-hit behavior. High-performance liquid chromatography demonstrated that the major radiolabeled products in the aqueous phase co-eluted with C20:4, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and prostaglandin E2. Kinetic studies of the release of 6-keto-PGF1 alpha, the major metabolite, displayed biphasic characteristics; a moderate amount of this prostaglandin was released before the onset of cell lysis. Experimental evidence obtained by freeze-thaw or by incubation of these cells with melittin or A23187 indicated that cell lysis does not necessarily result in the production of inflammatory mediators. Furthermore, when macrophages were treated with serum complement, it was apparent that the major part of the release was due to C5b-9 and not to the action of C5a. We conclude that release of C20:4 and its derivatives from complement-treated macrophages does not depend on cytolysis, but is a consequence of insertion and channel formation.[1]

References

  1. Release of arachidonic acid and formation of oxygenated derivatives after complement attack on macrophages: role of channel formation. Imagawa, D.K., Osifchin, N.E., Ramm, L.E., Koga, P.G., Hammer, C.H., Shin, H.S., Mayer, M.M. J. Immunol. (1986) [Pubmed]
 
WikiGenes - Universities