The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.

We have studied the viscosity dependence of the acrylamide quenching of the fluorescence on the internal tryptophan residues in cod parvalbumin and ribonuclease T1, as well as the model systems. N-acetyl-L-tryptophanamide and glucagon. For the latter systems, the apparent rate constant, kq(app), for acrylamide quenching shows a typical diffusion-limited behavior. For parvalbumin and ribonuclease T1, however, the viscosity dependence of kq(app) is quite different. There is little change in the kq(app) values on increasing the bulk viscosity from 1 to 10 cP (by addition of glycerol), but a further increase from 10 to 100 cP results in a significant reduction in the kq(app). Both an unfolding mechanism and a quencher penetration mechanism are considered to explain the results. Only the penetration mechanism is found to be consistent, and our data are interpreted as indicating that the rate-limiting step for quenching goes from being that of diffusion through the protein matrix, at low viscosity, to diffusion through the bulk solvent, at high viscosity. By also considering the Kramers' relationship in fitting our data, we are able to obtain insight regarding the coupling between internal fluctuations in the structure of the protein and motion of the bulk solvent. For parvalbumin and ribonuclease T1, the internal dynamics are found to be very weakly coupled to the bulk.[1]

References

 
WikiGenes - Universities