The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PVALB  -  parvalbumin

Homo sapiens

Synonyms: D22S749, Parvalbumin alpha
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PVALB

 

Psychiatry related information on PVALB

 

High impact information on PVALB

  • Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin [11].
  • Synaptically and electrically coupled networks of parvalbumin-containing basket cells operate as a non-plastic, precision clockwork for gamma and theta oscillations, and are indispensable for basic cortical processing [12].
  • The protein occurs as a novel dimer assembly with unique features: in contrast to well known EF-hand proteins such as calmodulin, parvalbumin or the S100 proteins, Phl p 7 adopts an extended conformation [13].
  • This is equivalent to the concentration of binding sites on the calcium-binding proteins (troponin and parvalbumin) in frog muscle [14].
  • An increased number and proportion of the GPi neurons were positive for the calcium-binding protein parvalbumin in tissue from TS subjects, whereas lower densities of parvalbumin-positive interneurons were observed in both the Cd and putamen of TS subjects [6].
 

Chemical compound and disease context of PVALB

 

Biological context of PVALB

 

Anatomical context of PVALB

  • The density of inhibitory PV-immunoreactive interneurons was quantitatively assessed in all patients and control cases by using a two-dimensional cell-counting technique on PV immunostained sections [21].
  • Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy [21].
  • For example, in rat, alpha parvalbumin was found in extrafusal and intrafusal skeletal-muscle fibres whereas, in man, alpha parvalbumin was restricted to the muscle spindles [22].
  • The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord [23].
  • Markers of inhibitory neurotransmission are altered in the prefrontal cortex (PFC) of subjects with schizophrenia, and several lines of evidence suggest that these alterations may be most prominent in the subset of GABA-containing neurons that express the calcium-binding protein, parvalbumin (PV) [24].
 

Associations of PVALB with chemical compounds

  • Given the critical role that PV-containing GABA neurons appear to play in regulating the cognitive functions mediated by the PFC, the selective alterations in gene expression in these neurons may contribute to the cognitive deficits characteristic of schizophrenia [24].
  • The calcium-induced conformational changes of the 108-amino acid residue proteins, cod III parvalbumin and oncomodulin, were compared using tryptophan as a sensitive spectroscopic probe [25].
  • Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan [26].
  • The parvalbumin metal ion-binding sites differ at the +z and -x residues: Whereas the CD site employs serine and glutamate (or aspartate), respectively, the EF site employs aspartate and glycine [27].
  • These results indicate that the presence of a hydroxyl group at the +z position is sufficient to confer pH dependence on the 7F0-->5D0 spectrum of a parvalbumin EF-hand domain [28].
 

Physical interactions of PVALB

  • However, calbindin and calretinin also show low levels of staining in the ventral nuclear complex and in the medial and lateral geniculate bodies which overlaps with the intense parvalbumin staining in these regions [29].
  • Ca2+ in the calcium-binding protein parvalbumin and Fe3+ in the iron-transporting protein transferrin were replaced with Yb3+ [30].
  • The microanatomy of the human lateral temporal cortex removed from patients with intractable temporal lobe epilepsy was studied using correlative light and electron microscopic immunocytochemical methods for the localization of the calcium-binding protein parvalbumin (PV) [31].
 

Regulatory relationships of PVALB

 

Other interactions of PVALB

  • After 4 weeks of differentiation in vitro, cortical and striatal NSCs gave rise to similar numbers of GABAergic and VMAT2- and parvalbumin-containing neurons [34].
  • Compared to normal cortex, the density of PV- and CB-immunoreactive interneurons was reduced in the perilesional cortex of GG patients, whereas CR-labeling was similar to that observed in normal cortex [35].
  • An STS in the human parvalbumin gene (PVALB) [36].
  • Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28K) and perineuronal nets in normal and scrapie-affected adult sheep brains [3].
  • Oncomodulin is a parvalbumin-like calcium binding protein of Mr 11,700 from rodent tumours [37].
 

Analytical, diagnostic and therapeutic context of PVALB

References

  1. Parvalbumin genes from human and rat are identical in intron/exon organization and contain highly homologous regulatory elements and coding sequences. Berchtold, M.W. J. Mol. Biol. (1989) [Pubmed]
  2. The expression of PARP, NF-kappa B and parvalbumin is increased in Parkinson disease. Soós, J., Engelhardt, J.I., Siklós, L., Havas, L., Majtényi, K. Neuroreport (2004) [Pubmed]
  3. Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28K) and perineuronal nets in normal and scrapie-affected adult sheep brains. Vidal, E., Bolea, R., Tortosa, R., Costa, C., Domènech, A., Monleón, E., Vargas, A., Badiola, J.J., Pumarola, M. J. Virol. Methods (2006) [Pubmed]
  4. Messenger RNA expression ratios among four genes predict subtypes of renal cell carcinoma and distinguish oncocytoma from carcinoma. Chen, Y.T., Tu, J.J., Kao, J., Zhou, X.K., Mazumdar, M. Clin. Cancer Res. (2005) [Pubmed]
  5. Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Chana, G., Everall, I.P., Crews, L., Langford, D., Adame, A., Grant, I., Cherner, M., Lazzaretto, D., Heaton, R., Ellis, R., Masliah, E. Neurology (2006) [Pubmed]
  6. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Kalanithi, P.S., Zheng, W., Kataoka, Y., DiFiglia, M., Grantz, H., Saper, C.B., Schwartz, M.L., Leckman, J.F., Vaccarino, F.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer's disease. Solodkin, A., Veldhuizen, S.D., Van Hoesen, G.W. J. Neurosci. (1996) [Pubmed]
  8. Selective neuronal vulnerability in human prion diseases. Fatal familial insomnia differs from other types of prion diseases. Guentchev, M., Wanschitz, J., Voigtländer, T., Flicker, H., Budka, H. Am. J. Pathol. (1999) [Pubmed]
  9. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Knable, M.B., Barci, B.M., Webster, M.J., Meador-Woodruff, J., Torrey, E.F. Mol. Psychiatry (2004) [Pubmed]
  10. Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis. Ferrer, I., Tuñón, T., Serrano, M.T., Casas, R., Alcántara, S., Zújar, M.J., Rivera, R.M. J. Neurol. Neurosurg. Psychiatr. (1993) [Pubmed]
  11. Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Collins, J.H. Nature (1976) [Pubmed]
  12. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Freund, T.F. Trends Neurosci. (2003) [Pubmed]
  13. The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. Verdino, P., Westritschnig, K., Valenta, R., Keller, W. EMBO J. (2002) [Pubmed]
  14. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. Somlyo, A.V., Gonzalez-Serratos, H.G., Shuman, H., McClellan, G., Somlyo, A.P. J. Cell Biol. (1981) [Pubmed]
  15. Parvalbumin, a horizontal cell-associated calcium-binding protein in retinoblastoma eyes. Kivelä, T. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  16. Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Himeda, T., Hayakawa, N., Tounai, H., Sakuma, M., Kato, H., Araki, T. Neuropsychopharmacology (2005) [Pubmed]
  17. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease. Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H., Miettinen, R. Neuroscience (1999) [Pubmed]
  18. Organization of the inner retina following early elimination of the retinal ganglion cell population: effects on cell numbers and stratification patterns. Williams, R.R., Cusato, K., Raven, M.A., Reese, B.E. Vis. Neurosci. (2001) [Pubmed]
  19. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy. Marco, P., Sola, R.G., Ramón y Cajal, S., DeFelipe, J. Brain Res. Bull. (1997) [Pubmed]
  20. The genes for the highly homologous Ca(2+)-binding proteins oncomodulin and parvalbumin are not linked in the human genome. Ritzler, J.M., Sawhney, R., Geurts van Kessel, A.H., Grzeschik, K.H., Schinzel, A., Berchtold, M.W. Genomics (1992) [Pubmed]
  21. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy. Garbelli, R., Meroni, A., Magnaghi, G., Beolchi, M.S., Ferrario, A., Tassi, L., Bramerio, M., Spreafico, R. Epilepsia (2006) [Pubmed]
  22. Human alpha and beta parvalbumins. Structure and tissue-specific expression. Föhr, U.G., Weber, B.R., Müntener, M., Staudenmann, W., Hughes, G.J., Frutiger, S., Banville, D., Schäfer, B.W., Heizmann, C.W. Eur. J. Biochem. (1993) [Pubmed]
  23. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Anelli, R., Heckman, C.J. J. Neurocytol. (2005) [Pubmed]
  24. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. Hashimoto, T., Volk, D.W., Eggan, S.M., Mirnics, K., Pierri, J.N., Sun, Z., Sampson, A.R., Lewis, D.A. J. Neurosci. (2003) [Pubmed]
  25. Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102. Hutnik, C.M., MacManus, J.P., Banville, D., Szabo, A.G. J. Biol. Chem. (1990) [Pubmed]
  26. Comparison of terbium (III) luminescence enhancement in mutants of EF hand calcium binding proteins. Hogue, C.W., MacManus, J.P., Banville, D., Szabo, A.G. J. Biol. Chem. (1992) [Pubmed]
  27. Interconversion of the ligand arrays in the CD and EF sites of oncomodulin. Influence on Ca2+-binding affinity. Henzl, M.T., Hapak, R.C., Likos, J.J. Biochemistry (1998) [Pubmed]
  28. Interconversion of the CD and EF sites in oncomodulin. Influence on the Eu3+ 7F0-->5D0 excitation spectrum. Kauffman, J.F., Hapak, R.C., Henzl, M.T. Biochemistry (1995) [Pubmed]
  29. The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Münkle, M.C., Waldvogel, H.J., Faull, R.L. J. Chem. Neuroanat. (2000) [Pubmed]
  30. Direct vibrational structure of protein metal-binding sites from near-infrared Yb3+ vibronic side band spectroscopy. Roselli, C., Boussac, A., Mattioli, T.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  31. Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity. DeFelipe, J., Garcia Sola, R., Marco, P., del Río, M.R., Pulido, P., Ramón y Cajal, S. Cereb. Cortex (1993) [Pubmed]
  32. Calcium-binding proteins in primate basal ganglia. Parent, A., Fortin, M., Côté, P.Y., Cicchetti, F. Neurosci. Res. (1996) [Pubmed]
  33. Interleukin-6 receptor expression and localization after transient global ischemia in gerbil hippocampus. Vollenweider, F., Herrmann, M., Otten, U., Nitsch, C. Neurosci. Lett. (2003) [Pubmed]
  34. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. Kallur, T., Darsalia, V., Lindvall, O., Kokaia, Z. J. Neurosci. Res. (2006) [Pubmed]
  35. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Aronica, E., Redeker, S., Boer, K., Spliet, W.G., van Rijen, P.C., Gorter, J.A., Troost, D. Epilepsy Res. (2007) [Pubmed]
  36. An STS in the human parvalbumin gene (PVALB). Ritzler, J.M., Berchtold, M.W. Nucleic Acids Res. (1992) [Pubmed]
  37. The presence in human tumours of a Mr 11,700 calcium-binding protein similar to rodent oncomodulin. MacManus, J.P., Whitfield, J.F., Stewart, D.J. Cancer Lett. (1984) [Pubmed]
  38. Electrospray ionization mass spectrometry: analysis of the Ca2+-binding properties of human recombinant alpha-parvalbumin and nine mutant proteins. Troxler, H., Kuster, T., Rhyner, J.A., Gehrig, P., Heizmann, C.W. Anal. Biochem. (1999) [Pubmed]
  39. Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations. Coutu, P., Bennett, C.N., Favre, E.G., Day, S.M., Metzger, J.M. Circ. Res. (2004) [Pubmed]
  40. Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra. Lee, C.R., Tepper, J.M. J. Comp. Neurol. (2007) [Pubmed]
  41. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Heizmann, C.W., Berchtold, M.W., Rowlerson, A.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
 
WikiGenes - Universities