The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inherited phosphofructokinase deficiency in dogs with hyperventilation-induced hemolysis: increased in vitro and in vivo alkaline fragility of erythrocytes.

Two male English springer spaniel dogs with a chronic hemolytic anemia and sporadic hemolytic crises, historically related to "stress" situations, were studied. Although canine erythrocytes are in general known to be more alkaline fragile, erythrocytes from both patients began to lyse earlier, at significantly lower pH values (near pH 7.4 at 37 degrees C), than erythrocytes from control dogs. Hyperventilation induced by 30 minutes of exercise, placement in a 39 degrees C water bath, or intravenous doxapram increased venous blood pH in dog 1 and control dogs, but transient hemoglobinemia, hemoglobinuria, and severe bilirubinuria occurred only in the studied patient. The erythrocyte phosphofructokinase (PFK) activity was severely decreased in both dogs (10% of controls). The erythrocyte 2,3-diphosphoglycerate content was markedly reduced and the cell chloride content was consequently increased. This change in cell chloride content is related to an increase in the erythrocyte pH, which may partially explain the pathogenesis of hemolysis in canine PFK deficiency. Thus, these studies demonstrate a presumably inherited erythrocyte PFK deficiency in English springer spaniels, which causes an increased in vitro and in vivo erythrocyte alkaline fragility. Dogs with PFK deficiency and inducible hemolytic crises may become a valuable genetic animal model in which to study the pathophysiology of hemolysis.[1]

References

 
WikiGenes - Universities