The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ca2+ priming during vitamin D-induced monocytic differentiation of a human leukemia cell line.

1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) induces monocytic differentiation of the human promyelocytic leukemia line, HL-60, and enhances Ca2+ transport in target cells of the mineral metabolism system. Hence, we determined whether the steroid's maturational effect on HL-60 involves alterations of intracellular calcium [( Ca2+]i). We found that, as detected by indo-1 fluorescence, [Ca2+]i increases in a slow tonic manner from 99 +/- 11 nM in virgin HL-60 to 182 +/- 19 nM (p less than 0.001) in those treated with 1,25-(OH)2D3 for 24 h. The first apparent rise in [Ca2+]i occurs at between 6 and 12 h and parallels expression of alpha-thrombin and N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptors. This increase in [Ca2+]i is derived from extracellular calcium as its reduction abolishes the effect. The increase in [Ca2+]i is associated with an increase in inositol trisphosphate-stimulated Ca2+ flux from intracellular stores. Interestingly, 1,25-(OH)2D3-mediated HL-60 differentiation as manifest by expression of the macrophage-specific antigen, 63D3, is not blocked by low extracellular calcium. In contrast, the fMLP-induced superoxide ion generation is diminished if the increase in [Ca2+]i is prevented. Furthermore, fMLP-stimulated signal transduction is also reduced by limiting the stimulation of [Ca2+]i during 1,25-(OH)2D3 treatment. Thus, although differentiation of HL-60 to the monocytic phenotype by 1,25-(OH)2D3 is Ca2+-independent, expression of response to regulatory stimuli requires priming of cellular Ca2+ stores. The latter appears to be induced by 1,25-(OH)2D3 via stimulated Ca2+ entry through the plasma membrane.[1]

References

  1. Ca2+ priming during vitamin D-induced monocytic differentiation of a human leukemia cell line. Hruska, K.A., Bar-Shavit, Z., Malone, J.D., Teitelbaum, S. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities