The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inactivation and partial degradation of phosphoribosylanthranilate isomerase-indoleglycerol phosphate synthetase in nongrowing cultures of Escherichia coli.

The stability of tryptophan biosynthetic enzyme activities was examined in cultures of repressor-negative (trpR) strains of Escherichia coli K-12 incubated under conditions of nutrient starvation of chloramphenicol inhibition. The results show that four of the five activities examined are stable under most nongrowing conditions, whereas one activity, indoleglycerol phosphate (InGP) synthetase, carried by the trpC protein, is unstable under most conditions tested. Phosphoribosylanthranilate (PRA) isomerase activity, which is also carried by the trpC protein, is unstable during starvation for ammonium, cysteine, or sulfate but is stable under other nongrowing conditions where InGP synthetase is not. InGP synthetase activity but not PRA isomerase activity is also diminished about twofold in cultures using glycerol as a carbon-energy source. These results indicate that one or both activities of the trpC protein is specifically inactivated under several culture conditions. Experiments with antibodies to the trpC protein show that sulfate-starved and ammonium-starved cultures contain 20 to 40% less immunologically reactive trpC protein than unstarved cultures. This indicates that the trpC protein is probably partially degraded under these conditions. During recovery from sulfate starvation or ammonium starvation, cultures slowly regain normal levels of InGP synthetase and PRA isomerase activities, suggesting that inactivation may be reversible.[1]


WikiGenes - Universities