The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of the hepatic artery in canalicular bile formation by the perfused rat liver. A multiple indicator dilution study.

The role of the hepatic artery in tracer water exchange and regulation of permeation of small solutes during canalicular bile formation was studied in the rat using a system that permitted perfusion of both hepatic artery and portal vein. Hepatic vein and biliary multiple indicator dilution curves were obtained after injection of indicators into either vessel. The main difference in hepatic venous dilution curves was a 3.1-fold longer t0 (time spent in nonexchanging vessels) and a 5% larger equivalent water space after injection into the hepatic artery. Biliary tracer recovery of water was markedly higher after arterial injection than after portal vein injection. Both taurocholate and taurodehydrocholate stimulated bile flow and increased biliary tracer recovery after injection into either vessel. The biliary recovery of sucrose relative to that of water, which is a measure of biliary sucrose permeation, was much lower when given into the hepatic artery than when given into the portal vein. During taurocholate infusion, it decreased by 33% in the hepatic artery but increased 36% in the portal vein. Taurodehydrocholate, by contrast, did not affect permeation of sucrose given into the portal vein. Our studies demonstrate marked exchange of tracer water in the biliary epithelium. Taurocholate, but not taurodehydrocholate, increases permeation of sucrose into bile in the portal vein bed while both bile salts decrease it in the arterial bed.[1]

References

 
WikiGenes - Universities