The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure-function relationships in the transposition protein B of bacteriophage Mu.

The B-protein of phage Mu, which is required for high frequency intermolecular transposition in vivo, shows ATPase activity in vitro, binds nonspecifically to DNA, and stimulates intermolecular strand transfer. To elucidate the structural bases for B-protein function, it was subjected to limited proteolysis with two different proteases, trypsin and chymotrypsin. The resulting fragments were mapped by amino acid sequencing. These data show that the B-protein is organized in two domains: an amino-terminal domain of 25 kDa and a carboxyl-terminal domain of 8-kDa. A fragment analogous to the amino-terminal domain, produced by deleting the 3' end of a cloned B gene, proved to be insoluble and had to be renatured after elution from a sodium dodecyl sulfate gel. The renatured protein retains ATP-binding activity and to a lesser extent the DNA-binding activity of the MuB protein, but is unable to hydrolyze ATP or function in transposition. We also show in this study that efficient DNA-strand transfer by the B-protein occurs even in the absence of a detectable ATPase activity or in the presence of adenosine 5'-O-(thio)triphosphate (ATP gamma S).[1]


  1. Structure-function relationships in the transposition protein B of bacteriophage Mu. Teplow, D.B., Nakayama, C., Leung, P.C., Harshey, R.M. J. Biol. Chem. (1988) [Pubmed]
WikiGenes - Universities