Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+.
cdc2+ and CDC28 play central roles in the cell division cycles of the widely divergent yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. The genes encode protein kinases that show 62% protein sequence identity and are capable of cross-complementation. Monoclonal antibodies were raised against p34cdc2, and a subset recognize p36cdc28. The cross-reacting antibodies detected a 34 kd homolog of the p34cdc2/p36CDC28, protein in HeLa cells. Human p34 was also recognized by an affinity-purified polyclonal anti-p34cdc2 serum. Peptide mapping of p34cdc2, p36CDC28, and human p34 revealed complete conservation of four tryptophan residues in the three proteins. p34 thus appears to be closely related to the two yeast proteins. In addition, a p34 immune complex showed protein kinase activity in vitro, and HeLa cell p34 interacts with p13, the human homolog of the suc1+ gene product of S. pombe.[1]References
- Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+. Draetta, G., Brizuela, L., Potashkin, J., Beach, D. Cell (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg