The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.

Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60. 2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87. 7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.[1]

References

  1. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli. Chen, Y.M., Tobin, J.F., Zhu, Y., Schleif, R.F., Lin, E.C. J. Bacteriol. (1987) [Pubmed]
 
WikiGenes - Universities