The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Lithium movements in resting and chemotactic factor-activated human neutrophils.

The ability of the chemotactic factor-activated Na+-H+ exchange system of human neutrophils to bind and transport other cations of the alkali metal series was investigated. After exposure of cells to the tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP), the influx of Li+ was measured by flame photometry and correlated with changes in intracellular pH (pHi) derived from the equilibrium distribution of 5,5-dimethyloxazolidine-2,4-dione. In Na+-depleted cells, Li+ (Km approximately equal to 14 mM) could substitute effectively for Na+ (Km approximately equal to 23 mM) at the external translocation site of the carrier, though the maximal transport rate for Li+ (approximately 8 meq.l-1.min-1) was roughly half that for Na+ (approximately 15 meq.l-1.min-1). On the other hand, the carrier lacked appreciable affinity for K+, Rb+, and Cs+. The influx of Li+ from the external solution was accompanied by an equivalent counterefflux of H+ from the internal milieu. The H+ efflux thus induced led to an intracellular alkalinization of approximately 0.7 units, the pHi rising from approximately 7.20 to approximately 7.90. The influx of Li+, as well as the increase in pHi in 140 mM Li+ medium, was competitively inhibited by amiloride (Ki approximately equal to 9 microM). Extracellular H+ also behaved as a competitive inhibitor of Li+ with a Ki of approximately 30 nM (pK'a approximately 7.50). These studies indicate that the FMLP-activated alkali metal cation-H+ exchange mechanism of neutrophils shares a number of features in common with those of Na+-H+ exchangers in a variety of different cells.[1]


WikiGenes - Universities