The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

New aspects on the metabolism of the sennosides.

Pure sennoside B was administered to rats. On appearance of the first wet faeces, sennoside B and its metabolites were determined in different parts of the alimentary tract, in faeces and in the urine. The total recovery of unchanged sennoside B and its metabolites was determined by alkali fusion followed by colorimetry and high-pressure liquid chromatography (HPLC). Alkali fusion in 1 N sodium hydroxide solution formed red solutions with sennosides and sennoside derivatives. The molar absorbance of sennosides A and B, sennidin B monoglucoside, sennidins, rhein, danthron, dithranol, rhein-8-glucoside and rhein anthrone at wavelengths of 505-530 nm related approximately to the number of ionizable hydroxy groups in the molecule. Brown polymerized products were isolated from the senna drug. The colour intensity of these products was approximately the same by weight as that of the sennosides themselves, although sennidins could no longer be freed from these by acid hydrolysis. After administration of sennoside B, the average sum of unchanged glucoside and known metabolites in different parts of the gastrointestinal tract and faeces of rats was 61.6% according to HPLC and 92.8% according to the alkali fusion procedure. This difference is indicative of the presence of substances which are no longer identifiable as sennoside derivatives, either by HPLC or by other classical chromatographic methods. Sennosides seem to be partly present in the alimentary tract in polymerized or bound form. The alkali fusion method may be useful in connection with the isolation of as yet unknown metabolites of the sennosides in the gastrointestinal tract.[1]

References

  1. New aspects on the metabolism of the sennosides. Hietala, P., Lainonen, H., Marvola, M. Pharmacology (1988) [Pubmed]
 
WikiGenes - Universities