The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae.

Protein synthesis by ribosomes from several cryptopleurine-resistant yeast mutants is also resistant to emetine and tubulosine. These mutants can be classified into two different types: Class I mutants which display high levels of resistance to emetine and tubulosine and Class II mutants that are only weakly resistant to tubulosine and are slightly more sensitive to emetine than those of Class I. Apparently all mutants have similar levels of resistance to cryptopleurine. The distinct phenotypes of Class I and Class II strains are expressed through their 40S ribosomal subunit. Genetic analysis has shown that the mutations to cryptopleuring resistance are allelic and that in a particular case (strain CRY6) the pleiotropic phenotype is a result of the expression of the cry1 locus. It is suggested that Class I and Class II mutants arise from two independent mutational events within The cry1 allel. In heterozygous (+/cry1) diploids both the sensitive and the resistant genes are expressed as shown by studies of the action of cryptopleurine on polyphenylalanine-synthesizing systems derived from each parental sensitive and resistant haploid strain and heterozygous diploid strains. The apparent dominance of sensitivity over resistance which may be observed in vivo in heterozygous (+/cry1) diploids has been explained in terms of the mode of action of the inhibitors.[1]


  1. Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae. Sánchez, L., Vásquez, D., Jiménez, A. Mol. Gen. Genet. (1977) [Pubmed]
WikiGenes - Universities