The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

phenylalanine     2-amino-3-phenyl-propanoic acid

Synonyms: phenylalanin, Phenylalamine, DL-PHE-OH, H-DL-Phe-OH, D,L-PHE, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of phenylalanine


Psychiatry related information on phenylalanine


High impact information on phenylalanine

  • This work shows that the phosphorylation of EF-2 by the EF-2 kinase results in a drastic inhibition of polyphenylalanine synthesis in poly(U)-directed translation [7].
  • In vitro, the binding of labeled VM to ribosomes, followed by its detachment, yields particles unable to perform poly(U)-directed polyphenylalanine synthesis [8].
  • The polyphenylalanine synthesis assay using the ribosomes constituted from the 60S subunit of AR100-9 and the 40S subunit of CHO indicated that the resistant phenotype of AR100-9 cells is due to an alteration of the 60S ribosomal subunit [9].
  • ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations [10].
  • The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G [11].

Chemical compound and disease context of phenylalanine


Biological context of phenylalanine


Anatomical context of phenylalanine


Associations of phenylalanine with other chemical compounds

  • Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less [26].
  • The sensitivity of IF-M1 activity to N-ethylmaleimide and heat (45 degrees) inactivation was tested in two model reactions requiring minimal complementary factors: (a) AUG-directed fMet-tRNAf binding to ribosomes; and (b) poly(U)-directed polyphenylalanine synthesis at 4 mM Mg2+ (IF-M2A, IF-M2B, EF-1, and EF-2 also required) [27].
  • Proteins were omitted one at a time, and the resulting particles were examined by sucrose gradient sedimentation and assayed for polyPhe synthesis, peptidyltransferase activity, and in some cases binding of elongation factor EF-G and GTP, and association with a (20 S . Phe-tRNA . poly(U)) complex [2].
  • Although thyroxine stimulates polyphenylalanine synthesis, it does not influence polyuridylic acid hydrolysis measured in the same reaction [28].
  • In addition to valyl-tRNA synthetase activity, which was assigned to the 140-kDa component, the purified complex exhibits a potent Elongation Factor 1 activity, determined by its ability to sustain poly(U)-dependent polyphenylalanine synthesis in the presence of Elongation Factor 2 [29].

Gene context of phenylalanine

  • A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590) [30].
  • Dephospho-EF-2 could support poly(U)-directed polyphenylalanine synthesis in a reconstituted elongation system when combined with EF-1 [31].
  • The activity of EF-1 alpha is enhanced in polyphenylalanine synthesis by a complementary component, EF-1 beta delta [32].
  • In heterozygous (+/cry1) diploids both the sensitive and the resistant genes are expressed as shown by studies of the action of cryptopleurine on polyphenylalanine-synthesizing systems derived from each parental sensitive and resistant haploid strain and heterozygous diploid strains [33].
  • Genetic analysis of a mutation affecting the thermal response of the 50S ribosomal subunit to in vitro polyphenylalanine synthesis indicates that the gene, rit, is located near metB on the Escherichia coli chromosome and that the probable gene order is metB-rit-arg-rpo [34].

Analytical, diagnostic and therapeutic context of phenylalanine

  • Fourteen mutant enzymes were purified to homogeneity, tested for feedback inhibition by Phe, and characterized by kinetic analysis and circular dichroism spectroscopy [35].
  • Steady-state perfusion studies of rat jejunum indicated rapid carrier-assisted uptake of Phe and alpha-Asp-Phe, but only slow passive diffusion of beta-Asp-Phe and cyclo-Asp-Phe from the lumen [36].
  • In a double-blind study, DL-phenylalanine (150--200 mg/24 h) or imipramine (150--200 mg/24 h) was administered to 40 depressed patients (20 patients in each group) for 30 days [37].
  • FTIR and laser Raman spectra of beta-alanine beta-alaninium picrate and dl-phenylalanine dl-phenylalaninium picrate crystals of space group P1 (C(i)) have been me in the 4000-50cm(-1) range, at room temperature [38].
  • DL-phenylalanine markedly potentiates opiate analgesia - an example of nutrient/pharmaceutical up-regulation of the endogenous analgesia system [39].


  1. The effect of antibodies against Escherichia coli small ribosomal subunit proteins on protein synthesis by rat liver ribosomes. Tanaka, T., Wool, I.G., Stöffler, G. J. Biol. Chem. (1980) [Pubmed]
  2. Functional organization of the large ribosomal subunit of Bacillus stearothermophilus. Auron, P.E., Fahnestock, S.R. J. Biol. Chem. (1981) [Pubmed]
  3. Initiation factors in protein synthesis by free and membrane-bound polyribosomes of liver and hepatoma. Murty, C.N., Verney, E., Sidransky, H. Biochem. J. (1975) [Pubmed]
  4. Localization of polyamine enhancement of protein synthesis to subcellular components of Escherichia coli and Pseudomonas sp. strain Kim. Rosano, C.L., Bunce, S.C., Hurwitz, C. J. Bacteriol. (1983) [Pubmed]
  5. Ribosome specificity of archaebacterial elongation factor 2. Studies with hybrid polyphenylalanine synthesis systems. Klink, F., Schümann, H., Thomsen, A. FEBS Lett. (1983) [Pubmed]
  6. Treatment of attention deficit disorder with DL-phenylalanine. Wood, D.R., Reimherr, F.W., Wender, P.H. Psychiatry research. (1985) [Pubmed]
  7. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Ryazanov, A.G., Shestakova, E.A., Natapov, P.G. Nature (1988) [Pubmed]
  8. Lasting damage to bacterial ribosomes by reversibly bound virginiamycin M. Parfait, R., Cocito, C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  9. Chinese hamster cell variants resistant to the A chain of ricin carry altered ribosome function. Ono, M., Kuwano, M., Watanabe, K., Funatsu, G. Mol. Cell. Biol. (1982) [Pubmed]
  10. The A-site Finger in 23 S rRNA Acts as a Functional Attenuator for Translocation. Komoda, T., Sato, N.S., Phelps, S.S., Namba, N., Joseph, S., Suzuki, T. J. Biol. Chem. (2006) [Pubmed]
  11. Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. Uchiumi, T., Honma, S., Nomura, T., Dabbs, E.R., Hachimori, A. J. Biol. Chem. (2002) [Pubmed]
  12. Comparison of ribosomes from Coxiella burnetii and Escherichia coli by gel electrophoresis, protein synthesis, and immunological techniques. Baca, O.G. J. Bacteriol. (1978) [Pubmed]
  13. Effects of ribosome-inactivating proteins on Escherichia coli and Agrobacterium tumefaciens translation systems. Girbés, T., Barbieri, L., Ferreras, M., Arias, F.J., Rojo, M.A., Iglesias, R., Alegre, C., Escarmis, C., Stirpe, F. J. Bacteriol. (1993) [Pubmed]
  14. Temperature-dependent inhibition of polyphenylalanine formation by the exotoxin of Bacillus thuringiensis. Somerville, H.J., Swain, H.M. FEBS Lett. (1975) [Pubmed]
  15. Long-term treatment of patients with mild and classical phenylketonuria by tetrahydrobiopterin. Trefz, F.K., Scheible, D., Frauendienst-Egger, G., Korall, H., Blau, N. Mol. Genet. Metab. (2005) [Pubmed]
  16. GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity. Guillot, D., Penin, F., Di Pietro, A., Sontag, B., Lavergne, J.P., Reboud, J.P. J. Biol. Chem. (1993) [Pubmed]
  17. Amino acid substitutions in protein biosynthesis. Poly(A)-directed polyphenylalanine synthesis. Pezzuto, J.M., Hecht, S.M. J. Biol. Chem. (1980) [Pubmed]
  18. Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. Venema, R.C., Peters, H.I., Traugh, J.A. J. Biol. Chem. (1991) [Pubmed]
  19. Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. Labrosse, B., Brelot, A., Heveker, N., Sol, N., Schols, D., De Clercq, E., Alizon, M. J. Virol. (1998) [Pubmed]
  20. Cryptopleurine--an inhibitor of translocation. Bucher, K., Skogerson, L. Biochemistry (1976) [Pubmed]
  21. Purification and characterization of three elongation factors, EF-1 alpha, EF-1 beta gamma, and EF-2, from wheat germ. Lauer, S.J., Burks, E., Irvin, J.D., Ravel, J.M. J. Biol. Chem. (1984) [Pubmed]
  22. Poly (U, s 4-U) as a synthetic messenger RNA for polyphenylalanine synthesis in a cell-free system derivem derived from rat liver. Keren-Zur, M., Hochberg, A.A., Groot, N.D., Lapidot, Y. Nucleic Acids Res. (1975) [Pubmed]
  23. Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. Uhlein, M., Weglöhner, W., Urlaub, H., Wittmann-Liebold, B. Biochem. J. (1998) [Pubmed]
  24. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. MacLennan, P.A., Smith, K., Weryk, B., Watt, P.W., Rennie, M.J. FEBS Lett. (1988) [Pubmed]
  25. Studies on the accessability of ribosomes to inactivation by the toxic lectins abrin and ricin. Fodstad, O., Olsnes, S. Eur. J. Biochem. (1977) [Pubmed]
  26. The selective release of one of the two L7/L12 dimers from the Escherichia coli ribosome induced by a monoclonal antibody to the NH2-terminal region. Tewari, D.S., Sommer, A., Traut, R.R. J. Biol. Chem. (1986) [Pubmed]
  27. Purification and characterization of homogeneous protein synthesis initiation factor M1 from rabbit reticulocytes. Merrick, W.C., Anderson, W.F. J. Biol. Chem. (1975) [Pubmed]
  28. Demonstration of thyroxine-stimulated incorporation of amino acid into peptide linkage in mitochondria-free system. Carter, W.J., Faas, F.H., Wynn, J. J. Biol. Chem. (1975) [Pubmed]
  29. Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1. Bec, G., Kerjan, P., Zha, X.D., Waller, J.P. J. Biol. Chem. (1989) [Pubmed]
  30. Role of yeast elongation factor 3 in the elongation cycle. Kamath, A., Chakraburtty, K. J. Biol. Chem. (1989) [Pubmed]
  31. Identification of the major Mr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. Nairn, A.C., Palfrey, H.C. J. Biol. Chem. (1987) [Pubmed]
  32. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Carvalho, M.D., Carvalho, J.F., Merrick, W.C. Arch. Biochem. Biophys. (1984) [Pubmed]
  33. Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae. Sánchez, L., Vásquez, D., Jiménez, A. Mol. Gen. Genet. (1977) [Pubmed]
  34. Mutation affecting the thermolability of the 50S ribosomal subunit in Escherichia coli. Ono, M., Kuwano, M. J. Bacteriol. (1978) [Pubmed]
  35. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. Zhang, S., Wilson, D.B., Ganem, B. Biochemistry (2000) [Pubmed]
  36. Intestinal absorption of aspartame decomposition products in adult rats. Lipton, W.E., Li, Y.N., Younoszai, M.K., Stegink, L.D. Metab. Clin. Exp. (1991) [Pubmed]
  37. DL-phenylalanine versus imipramine: a double-blind controlled study. Beckmann, H., Athen, D., Olteanu, M., Zimmer, R. Archiv für Psychiatrie und Nervenkrankheiten. (1979) [Pubmed]
  38. Spectral investigations of amino acid picrates. Briget Mary, M., Sasirekha, V., Ramakrishnan, V. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. (2006) [Pubmed]
  39. DL-phenylalanine markedly potentiates opiate analgesia - an example of nutrient/pharmaceutical up-regulation of the endogenous analgesia system. Russell, A.L., McCarty, M.F. Med. Hypotheses (2000) [Pubmed]
WikiGenes - Universities